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Information Extraction is a process of extracting stru-
ctured data from unstructured sources. It roughly con-
sists of tasks like entity extraction, relation extraction
and coreference resolution. Most of the current re-
search focuses only on one of the tasks or their combi-
nation in a pipeline. In this paper we introduce an end-
to-end iterative information extraction system. We
propose a novel dataset tranformation which enables
the use linear-chain conditional random fields for all
the three tasks. The usage of efficient linear model en-
ables faster training and inference with parallelization
possibilities.

1 Introduction

The mining, extraction and integration of useful data,
information and knowledge from unstructured sources,
is however far from easy. This specifically holds for the
information extraction (IE), which has been addressed
by the research community for a long time already.
The objective of the IE is to gather structured data
from unstructured sources (e.g., text documents, im-
ages, videos). The IE can be further divided into sev-
eral tasks, three of them being most important: (1)
entity extraction (EE) that deals with the identifica-
tion of entities, (2) relation extraction (RE) dealing
with the identification of relationships between enti-
ties, and (3) coreference resolution (COR) that identi-
fies phrases corresponding to the same entity.

While the early IE systems (can be traced back
to early 90’s) were mostly naive and rule based, later
(semi-)automatic techniques of wrapper generation, seed
expansion or rule induction were developed [11]. Fur-
ther on, the machine learning approaches gained pop-
ularity and outperformed other approaches on general
datasets. The most promising results have been how-
ever achieved by different graphical models, especially
conditional random fields [2] (CRF). In contrast to tra-
ditional machine learning classification or regression
techniques, CRF as sequence tagger benefits from the
representation of sentences as the sequence of words.

In this paper we propose a new ontology-based IE

system that combines the tasks of EE, RE and COR
in an iterative method. For all the subtasks we use
(linear-chain) CRF models for training and inference.
We use the ontology for the process guidance, domain,
additional rules for the feature functions, and a schema
for semantic database. Furthermore, we introduce a
special dataset transformation which enables the usage
of only linear models and the use of parallelization.

The rest of the paper is organized as follows. Sec-
tion 2 gives a brief review of the related work. Next,
the CRF is presented and the iterative ontology-based
information extraction system with dataset transfor-
mations is proposed. In Section 4.1 we describe sys-
tem’s general training and inference algorithm. Lastly
we discuss the proposed solution and reveal further
work.

2 Related work

Early work in IE was mostly driven by shared efforts at
MUC (Message Understaning Conference) and CoNLL
(Conference on Computational Language Learning), and
by the ACE (Automatic Content Extraction) program.
Since the vast majority of the research on each of the IE
tasks was done independently [11], the applicability of
the proposed approaches was somewhat limited. Nev-
ertheless, the most thoroughly investigated task EE is
relatively well solved, with state-of-the-art approaches
achieving accuracy over 90% on general datasets [8]. In
contrast to the latter, RE and COR approaches achieve
only up to about 70% [4, 3].

The idea of an iterative IE (also collective IE ) was
first employed for EE by exploiting mutual influence
between possible extractions [1]. In [6], authors pro-
posed an iterative system combining EE and RE with
knowledge integration from an ontology. Although the
system is rule-based, it was an important step towards
a general approach. Felix [7], a state-of-the-art IE sys-
tem based on Markov logic networks [10], accepts gen-
erally applicable rules and scales to very large datasets.
The system has been tested against EE and COR with
promising results, still, it requires a substantial amount



of manual input.
Ontology-based IE has recently emerged as an im-

portant subfield of IE [5]. Ontologies represent an
additional knowledge that can be efficiently employed
during the extraction process. Most modern systems
use a single ontology for domain representation [9],
however, there is no rule against using more of them.

The main contributions of this paper are as follows:
(1) generic ontology-based IE architecture (adaptable
to arbitrary domain or language), (2) a holistic IE
approach (combining all three main tasks and inter-
mediate results), (3) faster training and inference due
to an efficient CRF model (straightforward adaptation
to parallel architecture), and (4) the special dataset
transformations to enable EE, RE and COR using sim-
ple linear models.

3 Conditional random fields

Conditional random fields (CRF) [2] is an example of
a discriminative model that estimates the joint distri-
bution p(y|x) over the target sequence y conditioned
on the observed sequence x. For example, an observed
sequence x1 is a sequence of words within the first sen-
tence. Next to this there are also corresponding se-
quences that contain part-of-speech-tags, lemmas, parse
trees, etc., respectively. These are used by different
feature functions fi employed by a CRF in order to
model the target sequence y1. In our system we will
predict three types of target sequences, one for each of
the IE tasks (i.e., EE, RE and COR).

Training CRF actually means finding a weight vec-
tor w that predicts best possible (i.e., most probable)
sequence ŷ given x. Hence,

ŷ = arg max
y

p(y|x,w), (1)

where the conditional distribution equals

p(y|x,w) =
exp(

∑m
j=1 wj

∑n
i=1 fj(y, x, i))

C(x,w)
. (2)

Here n is the length of the observed sequence x, m is
the number of feature functions and C(x,w) is a nor-
malization constant computed over all possible y. It
can be omitted because we only take the most prob-
able sequence and are not interested into the exact
probabilityl.

The structure of a CRF is defined by the refer-
ences to target sequence labels within the feature func-
tions. A linear-chain CRF (LCRF) feature function
calculated at position i can depend only on the cur-
rent and the previous sequence labels yi and yi−1. For
arbitrary structured CRF exact inference of weights
is intractable due to an exponential number of par-
tial sequences. Thus, approximate approaches must
be adopted. On the other hand, the maximal length

of a partial sequence in LCRF is limited to two, while
training and inference can be easily and fast solved us-
ing forward–backward method and Viterbi algorithm.
Note that LCRF have already been succesfully used
for IE, especially at EE task.

3.1 Feature functions

The modelling of feature functions is the main source
of increase of precision and recall when training CRF
classifiers. Usually these are given as templates and fi-
nal features are generated by scanning the entire train-
ing data. An example of a simple feature function can
return 1 if the previous word is “Mr.” and current
word is capitalized, otherwise returns 0.

We categorise the feature functions into four cate-
gories: Preprocessing, String, Semantic and Iterative.
Detailed description of a complete set of feature func-
tions is ommitted due to space limitations. (Exact
feature functions we use can be retrieved from the sys-
tem’s source code.)

4 Iterative IE system

In the following section we give a high-level descrip-
tion of the proposed iterative end-to-end IE system.
Then we present general training and inference meth-
ods for all three subtasks. Source repository of the
whole proposed system with relationship extraction
and coreference resolution evaluation is publicly avail-
able (https://bitbucket.org/szitnik/iobie).
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Figure 1: The proposed iterative end-to-end information
extraction system.

The proposed high level architecture of the end-to-
end IE system is shown in Fig. 1. The term end-to-end
is used because the system takes raw text as input and
returns fully processed result for all three IE subtasks.
The main modules are the following:

(1) Preprocessing module enriches the input data
with additional attributes required in the subsequent
modules. In particular, the module detects sentence



and word boundaries, lemmatizes the words, performs
part-of-speech tagging, dependency parsing and other
(details are omitted due to space limitations). Note
that this is the only part of the system that is lan-
guage dependent. (When no preprocessing methods
are available for a certain language, the module must
at least identify sentence and word boundaries.)

(2) Extraction is the system’s most important
module that consists of an iterative approach for EE,
RE and COR combined with data deduplication and
merging techniques. Training and inference of the un-
derlying CRF models is outlined in Section 4.1. Since
CRF models are used for EE, RE and COR, annota-
tions from entity, coreference and relation tasks can be
easily transfered throughout the system. Data dedu-
plication and merging connects identified entities and
their coreferences into a semantic graph via extracted
relationships. For this task we use collective entity
resolution techniques. Note that the resulting graph
enables the identification of pairs of distant entities or
coreferences, while it also represents an input for ad-
ditional feature functions at the next iteration of the
extraction. The extraction proceeds until no change
is detected in two consecutive iterations, or when the
maximum number of iterations is reached.

(3) Ontology module is used in three different
contexts. Firstly, the ontology represents the underly-
ing domain modelled by EE and RE tasks (i.e., enti-
ties and relations are represented as ontology concepts
and properties). Secondly, the ontology can also define
arbitrary concepts, constraints or rules (e.g., distance
between concepts, neighborhood of a concept, regu-
lar expression that a concept must conform to etc.).
These are used directly by feature functions, thus sys-
tem performance can be improved by ontology popula-
tion. Note that this is the only part of the system that
can be manipulated by the user. Thirdly, ontology also
serves as a data store schema for extracted entities like
a gazetteer list (i.e., a set of known instances) per each
concept.

Output of the system consists of a semantically an-
notated graph that is, with the user’s consent, saved
into the internal semantic data store.

4.1 Training and inference

The proposed architecture takes raw text as input and
returns semantically annotated text as output. Be-
cause we treat all three subtasks EE, REL and COR as
sequence labelling tasks, we transform the input data
into a unified representation during the preprocessing
step.

Let x = [x1, x2, ..., xn] denote a sequence of men-
tions from one document. Mention is every text ref-
erence that refers to a specific named entity. Our
goal is to predict the target sequence yli , where li ∈

{EE,REL,COR}. For EE we use standard labelling
as is traditionally proposed in the field. For RE we la-
bel i-th mention with the name of a relationship which
exists between mentions xi−1 and xi or otherwise with
O (i.e. Other). For COR we label i-th mention with
C if mentions xi−1 and xi are coreferent or otherwise
with O.

To enable the extraction of relationships and coref-
erences over larger distances (i.e. having one or more
mentions in between) and still using linear models, we
propose a special skip-mention sequence transforma-
tion. An example of transformation from initial to
two other skip-mention sequences for the COR task is
shown in Fig. 2. We call initial sequence (e.g. x) zero
skip-mention sequence, sequence that contains every
second mention is one skip-mention sequence, etc.. For
each skip-mention distance we train separate LCRF
model and then combine the results of all models. Train-
ing and inference can thus be parallelized.

John Jena He OBI she there It DIY Market

O O O O O O C C
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Figure 2: Transformation into skip-mention sequences for
input sentence “John is married to Jena. He is a mechanic
at OBI and she works there. It is a DIY market.”.

The results show that we can identify relationships
with high accuracy [12]. Preliminary results for the
COR task also show similar improvements over tradi-
tional methods.

We show a high level implementation of one it-
eration for one of the subtasks over skip-mention se-
quences in Fig. 3. We first detect mentions from input
documents [3]. From these we form multiple sequences
and perform model loading. When training, where we
already have tagged data, the new models are learned
and then loaded. Using these models we perform in-
ference and combine the results using entity resolution
techniques. The iterative method is repeating these
steps for each of the EE, RE and COR tasks. Lastly,
entities (i.e. clusters of mentions) with extracted rela-
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Figure 3: High level skip-mention information extraction architecture.

tionships are returned as a final result.
We tested the system only using EE and RE sub-

tasks and achieved promising results [13].

5 Conclusion

This paper proposes an iterative end-to-end informa-
tion extraction system that uses linear-chain condi-
tional random fields only. The system employs three
main tasks - entity extraction, relation extraction and
coreference resolution with additional labelling trans-
formations. We categorise feature functions and present
new iterative ones to take into account intermediate
labellings from previous iterations and semantic ones,
which are not only for guidance, but also for domain,
rules and semantic database schema definition.
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