
Page Proof

September 3, 2014 18:36 WSPC/S0219-5259 169-ACS 1450022

Advances in Complex Systems1

Vol. 17 (2014) 1450022 (26 pages)2

c⃝ World Scientific Publishing Company3

DOI: 10.1142/S02195259145002224

NODE MIXING AND GROUP STRUCTURE5

OF COMPLEX SOFTWARE NETWORKS6

LOVRO ŠUBELJ∗, SLAVKO ŽITNIK†, NELI BLAGUS‡7

and MARKO BAJEC§8

Faculty of Computer and Information Science,9

University of Ljubljana, Tržaška Cesta 25,10

SI-1001 Ljubljana, Slovenia11
∗lovro.subelj@fri.uni-lj.si12
†slavko.zitnik@fri.uni-lj.si13
‡neli.blagus@fri.uni-lj.si14
§marko.bajec@fri.uni-lj.si15

Received 16 August 201316

Revised 27 June 201417

Accepted 21 August 201418

Published19

Large software projects are among most sophisticated human-made systems consisting of20

a network of interdependent parts. Past studies of software systems from the perspective21

of complex networks have already led to notable discoveries with different applications.22

Nevertheless, our comprehension of the structure of software networks remains to be23

only partial. Here we investigate correlations or mixing between linked nodes and show24

that software networks reveal dichotomous node degree mixing similar to that recently25

observed in biological networks. We further show that software networks also reveal26

characteristic clustering profiles and mixing. Hence, node mixing in software networks27

significantly differs from that in, e.g., the Internet or social networks. We explain the28

observed mixing through the presence of groups of nodes with common linking pat-29

tern. More precisely, besides densely linked groups known as communities, software net-30

works also consist of disconnected groups denoted modules, core/periphery structures31

and other. Moreover, groups coincide with the intrinsic properties of the underlying32

software projects, which promotes practical applications in software engineering.33

Keywords: Software networks; node mixing; node groups; software engineering.34

1. Introduction35

Large software projects are one of the most sophisticated and diverse human-made36

systems. Still, our comprehension of their complex structure and behavior remains37

to be only partial [5]. On the other hand, studies on modeling software systems38

as networks of interdependent parts have recently led to some notable discoveries39

and promoted different applications [12, 46]. Complex networks possibly provide40

the most adequate framework for the analysis of large software systems developed41

according to object-oriented, structured programming and other paradigms [30, 51].42

1450022-1

http://dx.doi.org/10.1142/S0219525914500222

Page Proof

September 3, 2014 18:36 WSPC/S0219-5259 169-ACS 1450022

L. Šubelj et al.

Past studies have already shown that software systems modeled as directed net-1

works are scale-free [2] with a power-law in-degree distribution and, e.g., exponential2

out-degree distribution [52, 53]. Furthermore, networks are small-world [57], when3

represented with undirected graphs [30, 23], and reveal a hierarchical [55] and frac-4

tal structure [8, 4]. The latter can be, similarly as the properties mentioned above,5

related to code complexity or reusability and the quality of the underlying software6

projects [47, 51]. Authors have also proposed different growing models of software7

networks [52, 44, 27] and investigated the importance of particular nodes in the8

networks [23], their evolution during project execution [5], practical applications9

of network community and motif structure [54, 46], and other [47].10

In the present paper, we first analyze the correlations or mixing [31, 32] between11

linked nodes in software networks, which has not yet been addressed properly.12

Despite a common belief that software networks are negatively correlated or disas-13

sortative by degree [32, 15] as, e.g., web graphs or the Internet [38], we show that14

networks are indeed strongly disassortative by in-degree, but much more positively15

correlated or assortative by out-degree, otherwise a characteristic property of differ-16

ent social networks [36]. Software networks thus reveal dichotomous degree mixing,17

similar to that recently detected in undirected biological networks [19].18

We further show that software networks are characterized by a sickle-shaped19

clustering [57] profile also observed in [19]. This unique shape is retained in the20

case of degree-corrected clustering [43], whereas the structure of the networks differs21

significantly from that of the Internet or a social network. More precisely, software22

networks contain connected parts or regions with very low or very high degree-23

corrected clustering (Fig. 1), which is else observed only for either the Internet or24

a social network. Nevertheless, all types of networks reveal clear degree-corrected25

clustering assortativity that has not been reported in the literature before.26

Fig. 1. Software dependency network representing the Lucene search engine. (Nodes with degree-
corrected clustering [43] above or below the mean are shown as circles and triangles, respectively.)

1450022-2

Page Proof

September 3, 2014 18:36 WSPC/S0219-5259 169-ACS 1450022

Node Mixing and Group Structure of Complex Software Networks

We explain the observed degree mixing and clustering assortativity through the1

presence of different types of groups or clusters of nodes with common linking pat-2

tern [35]. Besides densely linked groups denoted communities [16], software networks3

also consist of groups of structurally equivalent nodes denoted modules [48], and4

different mixtures [49] of these, with core/periphery and hub and spokes structures5

as special cases. We stress that the existence of different types of groups implies6

high clustering assortativity, with sparse module-like groups occupying regions with7

very low clustering and dense community-like groups in regions with higher clus-8

tering. While the former explain the observed disassortativity by degree, the latter9

in fact promote the assortativity in the out-degree. Note that the conclusions are10

consistent with the results obtained for the Internet and a social network, where11

mostly module-like or community-like groups are found, respectively.12

Although the main purpose of the analysis of node mixing is to relate charac-13

teristic group structure to the existing network properties, the dichotomous degree14

mixing in fact implies many of the common properties of real-world networks [19]15

(e.g., robustness). The latter, together with the observed node clustering assorta-16

tivity, might be of independent interest in network model design and other.17

The paper does not provide a clear rationale behind the existence of different18

types of groups in software networks. Nevertheless, the revealed groups are found19

to closely coincide with some of the intrinsic properties of the underlying software20

projects. The paper thus also includes preliminary work and results of selected21

applications of network group detection in software engineering.22

The rest of the paper is structured as follows. For the analysis in the paper,23

we adopt software dependency networks based on [46, 47], which are introduced in24

Sec. 2. Next, Sec. 3 contains an extensive empirical analysis and formal discussion25

on node degree and clustering mixing. Analysis of the characteristic groups of nodes26

in software networks is conducted in Sec. 4, while some practical applications of27

group detection in software engineering are given in Sec. 5. Section 6 concludes the28

paper and gives prominent directions for future work.29

2. Software Dependency Networks30

Complex software systems can be modeled with various types of networks including31

software architecture maps [52], class diagrams [54], inter-package [24] and class32

dependency networks [46], class, method and package collaboration graphs [21],33

software mirror [5] and subroutine call graphs [30], to name just a few. Networks34

mainly divide whether they are constructed from source code, byte code or program35

execution traces, and due to the level of software architecture represented by the36

nodes and the types of software relationships represented by the links.37

For consistency with most past work, we consider class dependency networks38

[46, 47] that are suitable for modeling object-oriented software systems. Here, nodes39

represent software classes and links correspond to different types of dependencies40

among them (e.g., inheritance). More formally, let a software project consist of41

1450022-3

Page Proof

September 3, 2014 18:36 WSPC/S0219-5259 169-ACS 1450022

L. Šubelj et al.

(a) (b)

Fig. 2. (a) A toy example class written in Java and (b) the corresponding class dependency
network.

classes C = {C1, C2, . . .}. Corresponding class dependency network is a directed1

graph G(V, L), where V = {1, 2, . . . , n} is the set of nodes and L is the set of2

links, m = |L|. Class Ci is represented by a node i ∈ V , while a directed link3

(i, j) ∈ L corresponds to some dependency between classes Ci and Cj (Fig. 2). This4

can be either an inheritance (i.e., Ci extends class or implements interface Cj), a5

composition (i.e., Ci contains a field or variable of type Cj) or a dependence (i.e.,6

Ci contains a constructor, method or function with parameter or return type Cj).7

Note that class dependency networks are constructed merely from the signatures8

of software classes, and fields and functions therein. Thus, the networks address the9

inter-class structure of the software systems, whereas the intra-class dependencies10

are ignored [47]. However, as such information is often decided by a team of devel-11

opers, prior to the actual software development, it is not influenced by the program-12

ming style of each individual developer. Moreover, such networks coincide with the13

flow of information and also the human comprehension of object-oriented software14

systems. Nevertheless, the networks still give only a partial view of the system.15

According to the object-oriented programming paradigm, a class that extends16

a parent class also inherits all of its functionality (not considering the visibility).17

Hence, each class implicitly acquires the dependencies of its parent class, the par-18

ent class of its parent class, and so on. For the analysis in the paper, we thus19

first construct the networks based on the explicit class dependencies as described20

above, while we then copy also the implicit dependencies of each class from its par-21

ent classes. This provides somewhat more adequate representation of the intrinsic22

structure of the software system and also coincides with the developer’s view. Note23

that the process does not significantly increase the overall number of dependencies24

(see below). Finally, we reduce the networks to simple directed graphs, to limit25

the influence of individual developers as above. Networks thus utilize merely the26

connectedness between the nodes, while disregarding its strength. We consider four27

such software dependency networks that are shown in Table 1 (see also Fig. 1). All28

selected networks represent well-known software projects developed in Java includ-29

ing physics simulation, scientific computing and network analysis libraries.30

For a thorough empirical comparison in the following sections, we also consider31

two other real-world networks. Namely, a snapshot of communications between32

1450022-4

Page Proof

September 3, 2014 18:36 WSPC/S0219-5259 169-ACS 1450022

Node Mixing and Group Structure of Complex Software Networks

Table 1. Software, Internet and social networks used in the study. (The values in brackets show
the number of links corresponding to explicit class dependencies.)

Network Description n m

jbullet JBullet 2.72 game physics simulation toolbox 166 619 (552)
colt Colt 1.2.0 scientific and technical computing library 227 963 (709)
jung JUNG 2.0.1 network and graph analysis framework 306 930 (713)
lucene Lucene 4.1.0 high-performance text search engine 1657 6808 (6252)

internet Oregon 2003 autonomous systems snapshot [26] 767 1857 —
collaboration Network scientists collaborations [33] 1589 2742 —

Note: Software networks are reduced to largest connected components.

autonomous systems of the Internet collected by the University of Oregon in1

2003 [26] and a social network of collaborations between scientists working on2

network theory and experiment [33] (Table 1). These are simple undirected net-3

works. Although some directed social and technological networks would enable more4

straightforward comparison, such networks are commonly either much larger than5

software networks or do not reveal particularly clear group structure. On the other6

hand, we stress that the selected networks represent two fundamentally different7

topologies. While social networks are characterized by a dense degree assortative8

structure and community-like groups [31, 36], the Internet is much sparser and dis-9

assortative by degree [38]. Also, the prevalent groups of nodes are module-like, e.g.,10

hub and spokes [25].11

3. Node Mixing in Software Networks12

The present section contains an extensive comparative analysis of different networks13

according to node degree and clustering mixing. We first review characteristics of14

node degree distributions in Sec. 3.1 and then show that software networks reveal15

dichotomous degree mixing in Sec. 3.2. Next, sickle-shaped clustering profiles of16

software networks are explored in Sec. 3.3, while Sec. 3.4 provides empirical evidence17

of node clustering assortativity in real-world networks.18

3.1. Scale-free node degree distributions19

Let ki be the degree of node i ∈ V and let ⟨k⟩ be the mean degree in the network.20

For directed networks, the degree is defined as the sum of in-degree and out-degree.21

Next, let ∆ be the maximum degree, and ∆in and ∆out the maximum in-degree22

and out-degree, respectively. Last, let γ be the scale-free exponent of the power-law23

degree distribution P (k) ∼ k−γ [2], γ > 1, and let γin and γout be the exponents24

corresponding to in-degree and out-degree distributions, respectively. The values of25

γ-s were estimated by maximum-likelihood method with goodness-of-fit tests [7].26

Table 2 describes node degree sequences of different networks. The degree ⟨k⟩ is27

somewhat comparable across software networks and approximately half the size28

for internet and collaboration networks. Observe, however, that in the case of29

1450022-5

Page Proof

September 3, 2014 18:36 WSPC/S0219-5259 169-ACS 1450022

L. Šubelj et al.

Table 2. Node degree sequences of different networks. (The exponents γ-s in italics do not
represent a valid fit to a power-law [7].)

Network ⟨k⟩ ∆ ∆in ∆out γ γin γout

jbullet 7.46 62 62 22 2.80 2.26 4 .04
colt 8.48 140 140 13 2.56 2.56 3 .91
jung 6.08 95 92 12 2.65 2.77 4 .47
lucene 8.22 337 333 20 2.24 2.14 4 .91

internet 4.68 303 — — 2.28 — —
collaboration 3.45 34 — — 2.85 — —

directed software networks the values of ∆-s and γ-s are obviously governed by a1

much broader in-degree sequences, compared to a relatively suppressed out-degree2

sequences (e.g., lucene network). Particularly, as past work has already shown, soft-3

ware networks have scale-free in-degree distribution that follows a power-law with4

2 < γin < 3 [52] and highly truncated, e.g., log-normal [9] or exponential [53],5

out-degree distribution (see Table 2). Note also that the tail of the (in-)degree6

distribution of lucene software network is well modeled by the scale-free degree7

distribution of a sparse topology of the Internet, while, from the perspective of out-8

degrees, the network is somewhat more similar to a dense assortative social network9

(Fig. 3).10

For the concerned software dependency networks, in-degree and out-degree11

sequences have a rather clear meaning in software engineering. The out-degree12

of node i corresponds to the number of classes required to implement the func-13

tionality of class Ci and is thus a measure of “external” complexity [47]. Indeed,14

different software quality metrics are based on the out-degrees of nodes in software15

networks [6, 51]. On the other hand, the in-degree of node i corresponds to the16

number of classes that depend on or use class Ci and is related to the level of code17

reusability [47].18

Fig. 3. Node degree distributions of larger networks (see also Table 2). Note that lucene software
network reveals scale-free (in-)degree distribution as the Internet and a truncated, e.g., log-normal
or exponential, out-degree distribution more similar to the collaboration network.

1450022-6

Page Proof

September 3, 2014 18:36 WSPC/S0219-5259 169-ACS 1450022

Node Mixing and Group Structure of Complex Software Networks

Highly reused classes are, obviously, well known among developers and are thus1

also more commonly used in the future. The latter is exactly the principle behind2

the preferential attachment model [2], which produces power-law in-degree distribu-3

tion in software dependency networks [47]. For the case of the out-degree distribu-4

tion, long scale-free tail is suppressed by constant incremental refactoring of classes5

within a growing software project [3] (to reduce its complexity), while such distri-6

bution also results from a certain class of software duplication mechanisms [53].7

3.2. Dichotomous node degree mixing8

The most straightforward way to analyze node degree mixing in general networks is
to measure r [31, 32], which is defined as a Pearson correlation coefficient of degrees
at links’ ends, r ∈ [−1, 1]. Hence

r =
1

2σk

∑

(i,j)∈L

(ki − ⟨k⟩)(kj − ⟨k⟩), (1)

where σk is the standard deviation, i.e., σk =
√∑

i∈V (ki − ⟨k⟩)2. Assortative mix-9

ing by degree shows as a positive correlation r > 0, while disassortative degree10

mixing refers to a negative correlation r < 0. For the case of directed networks, one11

can similarly define four additional coefficients r(α,β) [14], α, β ∈ {in, out}, where α,12

β correspond to the types of degrees of links’ source and target nodes, respectively.13

Table 3 summarizes degree mixing in different networks. As already stated14

before, social networks reveal strong assortative mixing [31] (e.g., collaboration net-15

work), whereas the Internet is degree disassortative [38]. Software networks also16

appear to be disassortative by degree according to r [15]. Nevertheless, this is17

actually a consequence of the prevailing in-degree sequences (see Sec. 3.1). The net-18

works are indeed highly disassortative by in-degree, r(in ,in) ≪ 0, though much more19

assortative by out-degree in most cases, r(out,out) ≫ r(in,in) (e.g., lucene network).20

Expectedly, r(in ,out) reveals no clear mixing regime, r(in ,out) ≈ 0, while r(out,in) is21

again governed by the dominant in-degrees, r(out,in) ≈ r(in,in).22

Note that above coefficients provide a rather limited global view of degree mixing23

and can capture merely linear correlations. Figure 4 shows also neighbor connec-24

tivity plots [38] that display mean neighbor degree kN against node degree k. Here,25

assortative or disassortative mixing reflects in either increasing or decreasing trend,26

Table 3. Node degree mixing coefficients [15] of different networks.

Network r r(in,in) r(in,out) r(out,in) r(out,out)

jbullet −0.21 −0.29 −0.07 −0.26 −0.14
colt −0.24 −0.27 −0.06 −0.25 −0.28
jung −0.22 −0.25 −0.05 −0.24 −0.13
lucene −0.28 −0.30 0.00 −0.29 −0.04

internet −0.26 — — — —
collaboration 0.46 — — — —

1450022-7

Page Proof

September 3, 2014 18:36 WSPC/S0219-5259 169-ACS 1450022

L. Šubelj et al.

Fig. 4. Neighbor connectivity plots [38] of larger networks (see also Table 3). Note that lucene
software network reveals dichtomous degree mixing that is disassortative by in-degree as the
Internet and assortative by out-degree as social networks (e.g., collaboration network).

respectively. While the software network is clearly disassortative by in-degree, it1

is in fact slightly assortative by out-degree, as in the case of a social network.2

Furthermore, the degrees k show a clear two-phase or dichotomous mixing that3

is controlled by out-degrees for smaller k, and by in-degrees, when k increases.4

Although one can also observe some dichotomous behavior for collaboration and5

internet networks, this does not appear significant and can be due to the size of the6

networks. Thus, as previously claimed, software networks reveal dichotomous degree7

mixing and differ from other degree disassortative networks like web graphs and the8

Internet.9

It ought to be mentioned that similar observations were recently made also in10

undirected biological networks [19]. Although these are disassortative by degree [29],11

removing a certain percentage of high degree nodes or hubs [18] renders the net-12

works degree assortative. Since hubs in software networks correspond to nodes13

with high in-degree (see Table 2), our work generalizes that in [19] to directed14

networks.15

Dichotomous degree mixing in software networks can be seen as a product of16

different programming paradigms. Recall that the out-degree of a node measures17

the complexity of the corresponding software class, whereas its in-degree is related18

to class reuse (see Sec. 3.1). Disassortativity in the in-degrees can be interpreted19

as low probability of hubs to link; thus, highly reused classes tend not to depend20

on each other. Since these commonly implement a rather different functionality,21

the latter is in fact a result of minimum-coupling and maximum-cohesion princi-22

ple [45]. On the other hand, object-oriented software systems are commonly devel-23

oped according to Lego hypothesis [3], where smaller and simpler classes are used24

to implement larger and more complex ones, and so on. As this results in an entire25

hierarchy of classes with increasing complexity across the levels of the hierarchy, a26

class depends only on classes with rather similar complexity, i.e., classes from the27

previous level. Obviously, this implies assortativity in the out-degrees in software28

networks.29

1450022-8

Page Proof

September 3, 2014 18:36 WSPC/S0219-5259 169-ACS 1450022

Node Mixing and Group Structure of Complex Software Networks

3.3. Sickle-shaped node clustering profiles1

Besides degree distributions and mixing considered above, real-world networks are
commonly assessed due to their transitivity. For simple undirected graphs, this can
be measured by node clustering coefficient c [57], c ∈ [0, 1], defined as

ci =
ti(
ki
2

) , (2)

where ti is the number of links between the neighbors of node i ∈ V and
(
ki

2

)
is

the maximal number of links (ci = 0 for ki ≤ 1). Note that the denominator in
Eq. (2) introduces biases in the definition, since

(
ki

2

)
often cannot be reached due

to a fixed degree sequence [43] (see below). Thus, an alternative definition of node
degree-corrected clustering coefficient d [43], d ∈ [0, 1], has been proposed as

di =
ti
ωi

, (3)

where ωi is the maximal possible number of links between the neighbors of node i2

with respect to their degrees (di = 0 for ki ≤ 1). Since ω ≤
(
k
2

)
, d ≥ c by definition.3

Table 4 shows the mean node (degree-corrected) clustering ⟨c⟩ and ⟨d⟩ in dif-4

ferent networks. As these are small-world [57], ⟨c⟩ and ⟨d⟩ are considerably larger5

than the expected clustering coefficient p in a corresponding random graph [11],6

p = ⟨k⟩/(n−1). The structure of collaboration network else reveals the most densely7

linked neighborhoods, where the majority of nodes have d equal to one (see Table 4).8

Exactly the opposite holds for internet network, where d is close to zero, d < p,9

in most cases. On the other hand, software networks are again characterized by an10

interplay between the dense structure of social networks and the sparse topology of11

the Internet. Most of the nodes have moderate values of d, p < d < 1, whereas nodes12

with either very low or high d are concentrated in certain parts of the networks (not13

shown).14

We next consider node (degree-corrected) clustering profiles shown in Figs. 515

and 6. One can observe degree biases in the standard definition of clustering c that16

imply low c for hubs [see Eq. (2)], particularly apparent in degree disassortative17

networks (see Fig. 5). More precisely, c decreases rapidly with k, roughly following18

Table 4. Node clustering coefficients of different networks.

(% nodes)

Network ⟨c⟩ ⟨d⟩ d = 1 d < p

jbullet 0.43 0.50 9 20
colt 0.50 0.58 17 13
jung 0.51 0.58 19 19
lucene 0.50 0.55 11 13

internet 0.29 0.32 21 55
collaboration 0.64 0.69 61 28

Note: Networks are reduced to simple undirected graphs.

1450022-9

Page Proof

September 3, 2014 18:36 WSPC/S0219-5259 169-ACS 1450022

L. Šubelj et al.

Fig. 5. Node clustering [57] profiles of larger networks (see also Table 4). Note degree biases intro-
duced in the standard definition of clustering that imply low values for hubs, which is particularly
apparent in degree disassortative networks (e.g., lucene and internet networks).

Fig. 6. Node degree-corrected clustering [43] profiles of larger networks (see also Table 4). Note
that lucene software network reveals a sickle-shaped clustering profile most notably pronounced
for out-degrees, which is absent in the case of the Internet and the collaboration network.

a power-law form c ∼ k−1 in the case of the Internet [56, 43]. Note that these biases1

are absent from the degree-corrected definition of clustering d (see Fig. 6), which2

thus provides somewhat more adequate measure of network transitivity.3

Note also very peculiar sickle-shaped (degree-corrected) clustering profiles4

revealed for the software network (see, e.g., Fig. 5). This unique form is most notably5

pronounced in the case of out-degrees and is, at least in the undirected case, an arti-6

fact of dichotomous node degree mixing [19]. On the contrary, profiles of internet7

and collaboration networks show no particular scaling for degree-corrected cluster-8

ing d (see Fig. 6), consistent with the analysis of node degree mixing in Sec. 3.2.9

Nevertheless, all networks considered here reveal clear degree-corrected clustering10

assortativity, which is throughly investigated in the following section.11

Same as before, (degree-corrected) clustering profiles in software networks can be12

related to the intrinsic properties of the underlying software systems [46, 47]. While13

nodes that represent core classes of a software project commonly group together into14

dense neighborhoods with high clustering, nodes with lower clustering most often15

correspond to different implementations of the same functionality (see Fig. 14).16

1450022-10

Page Proof

September 3, 2014 18:36 WSPC/S0219-5259 169-ACS 1450022

Node Mixing and Group Structure of Complex Software Networks

3.4. Node degree-corrected clustering assortativity1

The present section explores node (degree-corrected) clustering mixing in different
networks. For this purpose, we define clustering mixing coefficient rc, rc ∈ [−1, 1], as

rc =
1

2σc

∑

(i,j)∈L

(ci − ⟨c⟩)(cj − ⟨c⟩), (4)

and similarly rd for degree-corrected clustering coefficient. rc and rd are again2

just Pearson correlation coefficients of (degree-corrected) clustering at links’ ends3

and are shown in Table 5. Due to degree biases in c (see Sec. 3.3), rc > 0 in4

degree assortative networks (e.g., collaboration network), while rc < 0 for networks5

that are disassortative by degree (e.g., lucene network). On the other hand, all6

networks show clear degree-corrected clustering assortativity with rd ≫ 0 (see also7

Fig. 7). Note also that correlations reflected in rd are much stronger than in the8

case of degree mixing coefficients r-s (see Table 3). To the best of our knowledge,9

this distinctive property of real-world networks has not yet been reported in the10

literature.11

According to Sec. 3.3, nodes in software networks have very different values of12

degree-corrected clustering d, which is not true for social networks or the Internet.13

Table 5. Node clustering mixing coefficients of
different networks.

Network rc rd

jbullet −0.06 0.50
colt −0.26 0.35
jung −0.07 0.33
lucene −0.40 0.50

internet −0.23 0.26
collaboration 0.44 0.68

Note: Networks are reduced to simple undirected
graphs.

Fig. 7. Neighbor (degree-corrected) clustering plots of larger networks (see also Table 5).
Note that all networks reveal a clear degree-corrected clustering [43] assortativity (e.g., lucene
network), which is absent from the standard definition of clustering [57] (e.g., internet network).

1450022-11

Page Proof

September 3, 2014 18:36 WSPC/S0219-5259 169-ACS 1450022

L. Šubelj et al.

Together with strong assortativity rd ≫ 0, this in fact implies entire connected1

parts or regions of nodes with rather similar d (e.g., very low or high). The latter2

can be clearly seen in Fig. 1, while, in the following section, we explain degree-3

corrected clustering assortativity, and dichotomous degree mixing observed in4

Sec. 3.2, through the presence of characteristic groups of nodes with common linking5

pattern [35]. More precisely, dense community-like groups occupy network regions6

with higher d and imply degree assortativity, while sparse module-like groups are7

found in regions with lower d and are responsible for degree disassortativity.8

4. Group Structure of Software Networks9

Node group structure of different networks is explored using a principled group10

extraction framework based on [49, 59]. The present section thus first introduces11

the framework and corresponding formalisms in Sec. 4.1, while Sec. 4.2 reports12

the characteristic group structure revealed in software and other networks. Last,13

Sec. 4.3 relates different types of groups to degree and clustering mixing observed14

in Sec. 3, which uniquely characterizes the structure of these networks.15

4.1. Node group extraction framework16

The formalism proposed in [49] defines network groups for the case of simple undi-17

rected graphs. Let S be a group of nodes and T a subset of nodes representing its18

characteristic linking pattern, S, T ⊆ V . Also, let s = |S| and t = |T |. The node19

pattern T is defined thus to maximize the number of links between S and T , and20

minimize the number of links between S and T C , while disregarding the links with21

both endpoints in SC . Note that this simple formalism allows one to derive most22

types of groups commonly analyzed in the literature [13, 34] (Fig. 8).23

For instance, communities [16], i.e., densely linked groups of nodes that are only24

sparsely linked between, are characterized by S = T . On the other hand, S ∩T = ∅25

corresponds to groups of structurally equivalent [28] nodes denoted modules [48].26

Communities and modules represent two extreme cases, with all other groups being27

the mixtures of the two [49]. For the analysis in the paper, we thus distinguish28

between three types of groups according to the following definitions.29

(a) Community (b) Core/periph (c) Mixture (d) Module (e) Hub and spokes

Fig. 8. Toy examples of different types of groups of nodes in real-world networks (see also text).
(Groups S and corresponding patterns T are shown with filled and marked nodes, respectively.)

1450022-12

Page Proof

September 3, 2014 18:36 WSPC/S0219-5259 169-ACS 1450022

Node Mixing and Group Structure of Complex Software Networks

Definition 1. Community is a group of nodes S with S = T .1

Definition 2. Module is a group of nodes S with S ∩ T = ∅.2

Definition 3. Mixture is a group of nodes S with S ∩ T ⊂ S, T .3

All these groups have been extensively analyzed in the past [42, 40, 13, 34].4

Clear communities appear in different social and information networks [16, 10],5

while modules are most commonly found in the case the Internet, biological and6

technological networks [39, 48]. For consistency, we also consider two special cases.7

Definition 4. Core/periphery structure is a mixture S with either S ⊂ T or T ⊂ S.8

Definition 5. Hub and spokes structure is a module S with t = 1.9

According to the above definitions, one can in fact determine the type of some
group S by considering Jaccard index [22] of S and T . We thus define a group type
parameter τ [49], τ ∈ [0, 1], as

τ(S, T) =
|S ∩ T |
|S ∪ T | . (5)

Communities have τ = 1, whereas modules are indicated by τ = 0. Mixtures10

correspond to groups with 0 < τ < 1. For the remaining of the paper, we refer to11

groups with τ ≈ 1 or τ ≈ 0 as community-like and module-like groups, respectively.12

The framework presented below is based on a group criterion W [49], W ∈ [0, 1].

W (S, T) = µ(S, T)(1 − µ(S, T))
(

L(S, T)
st

− L(S, T C)
s(n − t)

)
, (6)

where L(S, T) is the number of links between S and T , i.e., L(S, T) =
∑

(i,j)∈L δ(i ∈
S, j ∈ T), and µ(S, T) is the geometric mean of s and t normalized by the number
of nodes n, µ ∈ [0, 1].

µ(S, T) =
2st

n(s + t)
. (7)

Note that W is an asymmetric criterion that favors the links between S and T ,13

and penalizes for the links between S and T C . Since the links with both endpoints14

in SC are not considered, W is also a local criterion. We stress that, at least for15

the case S = T , criterion W has a natural interpretation in a wide class of different16

generative graph models [59] (e.g., block models [58]). Factor µ(1 − µ) in Eq. (6)17

prevents from extracting either very small or large groups with, e.g., s = 1.18

We next present the adopted group extraction framework [49, 59]. The frame-19

work extracts groups from the network sequentially, one by one, as follows. First,20

one finds group S and its corresponding pattern T that maximize criterion W using,21

e.g., tabu search [17] with varying initial conditions for S and T . At each step of22

the search, a single node is swapped in either S or T . Next, to extract the revealed23

group S from the network, one removes merely the links between S and T , and any24

node that might thus become isolated. The entire procedure is then repeated on the25

1450022-13

Page Proof

September 3, 2014 18:36 WSPC/S0219-5259 169-ACS 1450022

L. Šubelj et al.

remaining network until criterion W is larger than the value expected under the1

same framework in a corresponding Erdös–Rényi random graph [11]. The latter is2

estimated by a simulation, thus, all groups reported in the remaining of the paper3

are statistically significant at the 1% level (see [59] for further details).4

Note that the framework allows for overlapping [37], hierarchical [41], nested5

and other classes of groups commonly found in real-world networks. Nevertheless,6

it explicitly guards against extracting groups that are not statistically significant.7

We refer to the network structure remaining after the extraction as background.8

4.2. Characteristic node group structure9

Table 6 summarizes the basic properties of node groups extracted from different10

networks. Note that the mean group size ⟨s⟩ is somewhat comparable across soft-11

ware networks, where a characteristic group consists of around ten nodes. The mean12

pattern size ⟨t⟩ is slightly smaller, but still comparable to ⟨s⟩ (e.g., jung network).13

On the other hand, ⟨s⟩ ≫ ⟨t⟩ for the Internet, due to an abundance of hub and14

spokes-like modules. Since social networks are characterized by a pronounced com-15

munity structure [36], expectedly, ⟨s⟩ ≈ ⟨t⟩ for collaboration network.16

By examining the types of the revealed groups (see Table 6), one observes a17

very clear distinction between different networks. As already indicated above, col-18

laboration network consists of almost only communities. On the contrary, 85% of19

the groups found in internet network are modules. Software networks, however,20

are characterized by communities, modules and different mixtures of these (e.g.,21

lucene network). Thus, as already argued in the case of node mixing in Sec. 3,22

software networks represent a unique mixture of dense community-like structure23

of social networks and sparse module-like topology of the Internet. For a better24

comprehension, Fig. 9 shows most significant groups extracted from the networks.25

Characteristic group structure of different networks is also reflected in the mean26

group parameter ⟨τ⟩ (Table 7). Indeed, ⟨τ⟩ is almost zero or one for internet and27

collaboration networks, respectively. For software networks, ⟨τ⟩ is between 0.4 and28

0.65, as discussed above. Table 7 also reports the proportion of links explained by29

the group structure, and the proportion of nodes included in the groups. Despite the30

Table 6. Node groups and corresponding patterns extracted from different networks.

Group # (⟨s⟩)

Network # ⟨s⟩ ⟨t⟩ Community Core/periphery Mixture Module

jbullet 14 9.0 8.4 5 (7.8) 1 (12.0) 6 (12.2) 2 (5.5)
colt 15 10.3 8.3 3 (8.3) 1 (13.0) 9 (12.6) 2 (6.5)
jung 30 8.7 7.8 18 (9.9) 1 (10.0) 5 (9.6) 6 (5.7)
lucene 123 12.1 7.9 55 (8.6) 2 (14.5) 27 (15.7) 39 (14.7)

internet 33 10.6 4.5 1 (4.0) 1 (29.0) 3 (19.0) 28 (9.6)
collaboration 160 5.6 5.6 143 (5.6) 0 (0.0) 12 (6.8) 5 (3.0)

Note: Networks are reduced to simple undirected graphs.

1450022-14

Page Proof

September 3, 2014 18:36 WSPC/S0219-5259 169-ACS 1450022

Node Mixing and Group Structure of Complex Software Networks

Fig. 9. Node group sequence extracted from larger networks (see also Table 6). Note that lucene
software network contains communities, which are commonly found in social networks (e.g., col-
laboration network), modules like the Internet, and also different mixtures of these.

Table 7. Node group structure revealed in different networks (see also Table 6). Note that char-
acteristic topology of different networks is well characterized by the mean group parameter ⟨τ⟩.

% Links (% nodes)a

Network Group ⟨τ⟩ Community Core/periph. Mixture Module Background

jbullet 0.63 15 (22) 8 (7) 53 (42) 6 (7) 19 (66)
colt 0.41 7 (11) 5 (6) 69 (49) 4 (6) 15 (64)
jung 0.66 62 (51) 3 (3) 12 (16) 10 (11) 12 (44)
lucene 0.55 19 (25) 1 (2) 30 (24) 38 (34) 11 (49)

internet 0.08 0 (1) 12 (4) 13 (7) 34 (35) 41 (80)
collaboration 0.94 71 (47) 0 (0) 6 (5) 1 (1) 22 (47)

Note: Networks are reduced to simple undirected graphs.
aNodes can be included in multiple overlapping groups.

fact that group structure provides a rather coarse-grained abstraction of a network,1

the reveled groups explain 80–90% of the links in software and social networks,2

and almost 60% for the Internet. Also, groups contain most of the nodes in the3

networks.4

As already discussed in Sec. 3.3, different types of groups observed in soft-5

ware networks actually coincide with the intrinsic dynamics of the underlying soft-6

ware systems. More precisely, core classes of a software project commonly form7

dense inheritance hierarchies, while they also provide different convenience meth-8

ods for transforming other core classes. Consequently, corresponding nodes in class9

dependency networks cluster together and form communities [46, 48] (see Fig. 14).10

Moreover, software projects commonly consist of classes that represent indepen-11

dent implementations of the same functionality (e.g., different group detection algo-12

rithms). By definition, these do not depend on each other. However, they do depend13

on a similar set of other classes. Hence, corresponding nodes in software networks14

aggregate together into module-like groups [48, 47] (see Fig. 14). Similarly as above,15

mixtures of nodes in software networks are often just an artifact of different pro-16

gramming principles and practical limitations of software systems.17

1450022-15

Page Proof

September 3, 2014 18:36 WSPC/S0219-5259 169-ACS 1450022

L. Šubelj et al.

Note also particularly module-like structure of colt network compared to other1

software networks (see ⟨τ⟩ in Table 7). Since the network represents a software2

library for complex scientific and technical computing, high performance and scal-3

ability are of much greater importance than the system extensibility and future4

reusability. While the latter implies a modular design according to minimum-5

coupling and maximum-cohesion paradigm [45] and, consequently, a community-like6

structure of software networks [46], the former demands a great deal of code dupli-7

cation, which in fact promotes module-like groups in software networks [48]. Equiv-8

alently, networks that correspond to software projects with particularly modular9

design reveal more community-like structure (e.g., jung network). Group structure10

of software networks thus reflects different programming principles and paradigms11

followed during project development, which could be used for software quality12

control.13

Preliminary work on practical applications of network group detection in soft-14

ware engineering is described in Sec. 5, while, in the following section, we relate the15

characteristic group structure of software networks to previously observed dichoto-16

mous node degree mixing and degree-corrected clustering assortativity.17

4.3. Group degree and clustering mixing18

Section 3 shows that software networks are characterized by dichotomous node19

degree mixing that is assortative from the perspective of out-degrees, and disas-20

sortative from the perspective of in-degrees. Moreover, networks are composed of21

regions with rather similar clustering and reveal strong degree-corrected cluster-22

ing assortativity. We have postulated a hypothesis that the observed structure is23

a consequence of different types of groups of nodes present in the networks. More24

precisely, software networks contain dense community-like groups in regions with25

higher clustering, which imply assortativity in the out-degree, and sparse module-26

like groups in regions with lower clustering, which promote disassortativity by in-27

degree, and different mixtures of these. As already discussed before, existence of28

different groups immediately explains also degree-corrected clustering assortativity.29

We pursue the hypothesis by first investigating the regions of the networks30

occupied by different types of groups. Figure 10 shows group degree profiles that plot31

mean group parameter ⟨τ⟩ against node degree k. These do not provide any clear32

insight into the structure of the networks, due to a rather extensive overlaps between33

the groups, i.e., both high and low degree nodes are included into different groups.34

On the other hand, group degree-corrected clustering profiles in Fig. 11 clearly show35

that software network indeed consists of module-like groups with τ ≈ 0 in sparse36

regions with low clustering d ≈ 0 as hypothesized, while the plot reveals an expected37

increasing trend. Similarly, the network contains mostly community-like groups with38

τ ≈ 1 in dense regions with high clustering d ≈ 1. However, the corresponding nodes39

are included also in overlapping module-like groups thus τ ≈ 0.5 (see Fig. 11). The40

same observations apply for social network and the Internet.41

1450022-16

Page Proof

September 3, 2014 18:36 WSPC/S0219-5259 169-ACS 1450022

Node Mixing and Group Structure of Complex Software Networks

Fig. 10. Group degree profiles of larger networks that reveal no characteristic scaling.

Fig. 11. Group (degree-corrected) clustering profiles of larger networks. Note that lucene software
network consists of module-like groups with τ ≈ 0 in regions with d ≈ 0 as the Internet and mostly
community-like groups with τ ≈ 1 in regions with d ≈ 1 as the collaboration network.

We next consider group degree and clustering mixing. For this purpose, we
define group degree mixing coefficient r̃, r̃ ∈ [−1, 1], as

r̃ =
1

σk̃S
σk̃T

∑

S,T

(k̃S − ⟨k̃S⟩)(k̃T − ⟨k̃T ⟩), (8)

where k̃S is the degree of group S, i.e., k̃S =
∑

i∈S ki/s, and similarly for the pattern1

degree k̃T . We further define also directed group degree mixing coefficients r̃(α,β),2

α, β ∈ {in, out}, and group clustering mixing coefficients r̃c and r̃d, symmetrically3

as in Sec. 3. These provide an overview of degree and clustering mixing in regions4

covered by groups of nodes, and enable reasoning about the network structure5

implied by different types of groups.6

Table 8 displays group mixing coefficients. Most evidently, almost all correla-7

tions observed in the case of node mixing are strictly enhanced (see Table 3). Social8

network is assortative by degree, while the Internet is degree disassortative. Soft-9

ware networks again reveal disassortativity in the in-degrees. However, in contrast10

to before, group structure in fact promotes assortativity by out-degree in all soft-11

ware networks except colt network, due to the reason given in Sec. 4.2. Figure 1212

shows also group pattern connectivity plots. For software network, one can clearly13

1450022-17

Page Proof

September 3, 2014 18:36 WSPC/S0219-5259 169-ACS 1450022

L. Šubelj et al.

Table 8. Group degree and clustering mixing coefficients of different networks.

Network r̃ r̃(in,in) r̃(in,out) r̃(out,in) r̃(out,out) r̃c r̃d

jbullet −0.02 −0.15 −0.01 −0.20 0.66 0.47 0.97
colt −0.63 −0.60 −0.27 −0.63 −0.17 −0.59 0.76
jung −0.32 −0.32 −0.12 −0.30 0.54 0.45 0.78
lucene −0.16 −0.19 −0.12 −0.22 0.39 0.17 0.85

internet −0.54 — — — — −0.37 0.37
collaboration 0.84 — — — — 0.81 0.95

Fig. 12. Group pattern connectivity plots of larger networks (see also Table 8). Note that lucene
software network reveals assortative mixing by out-degree as social networks (e.g., collaboration
network) and disassortative mixing by in-degree as the Internet. While the former is an artifact
of community-like groups, the latter is in fact a signature module-like groups.

observe an increasing trend in the case out-degrees, and also larger in-degrees,1

which is obviously an artifact of community-like groups, as in the case of social net-2

work. Otherwise, in-degree profile has a decreasing structure similar to that of the3

Internet, which signifies module-like groups. Thus, confirming the above hypoth-4

esis, group structure of software networks can indeed explain dichotomous degree5

mixing with module-like groups responsible for disassortativity, most notably seen6

for smaller in-degrees, and community-like groups promoting assortativity in the7

out-degrees.8

It ought to be mentioned that the above relation between degree mixing and9

different groups of nodes can be justified theoretically. Since S = T for communities,10

this implies degree assortativity, as long as the sizes of communities differ [36]. Also,11

for s ̸≈ t, module-like groups should result in degree disassortativity [48]. Finally,12

according to discussion in Sec. 4.2, modules or communities are best pronounced13

through the out-degrees and in-degrees of nodes, respectively.14

Table 8 also reports group clustering mixing coefficients. As before, r̃c < 0 in15

some degree disassortative networks, due to the biases introduced in clustering c16

(see Sec. 3.3). Nevertheless, degree-corrected clustering mixing r̃d signifies extremely17

assortative structure with correlations between 0.75 and 0.95 for software and social18

networks (see also Fig. 13). Presence of clear groups of nodes thus indeed implies19

degree-corrected clustering assortativity, while the value of r̃d can be related to the20

1450022-18

Page Proof

September 3, 2014 18:36 WSPC/S0219-5259 169-ACS 1450022

Node Mixing and Group Structure of Complex Software Networks

Fig. 13. Group pattern (degree-corrected) clustering plots of larger networks (see also Table 8).
Note that networks reveal extremely clear group degree-corrected clustering [43] assortativity (e.g.,
lucene and collaboration network), which is an indication of a well pronounced group structure.

quality of network group structure. For example, in the case of the Internet, which1

has least clear group structure (see Sec. 4.2), r̃d is only 0.37.2

In summary, characteristic groups of nodes provide an important insight into3

the dynamics of complex networks and can, at least to some extent, explain the4

unique structure of software networks (i.e., degree and clustering mixing). There is5

of course no reason why the same principles should not apply to other real-world6

networks, directed or undirected, which will be thoroughly explored in future work.7

5. Applications in Software Engineering8

The present section describes preliminary work on practical applications of network9

group detection in software engineering. As already discussed before, groups of10

nodes in software dependency networks coincide with the intrinsic properties of the11

underlying software systems. For instance, Fig. 14 shows the most significant groups12

(a) Community in jung network (τ = 1) (b) Module-like group in colt network (τ = 0.06)

Fig. 14. Most significant groups of nodes extracted from different software networks (see also
Table 6). The groups correspond to (a) core classes of the software project and (b) different imple-
mentations of classes with the same functionality. (Nodes with degree-corrected clustering [43]
above or below the mean are shown as circles and triangles, respectively.)

1450022-19

Page Proof

September 3, 2014 18:36 WSPC/S0219-5259 169-ACS 1450022

L. Šubelj et al.

revealed in jung and colt networks. In the case of the former, the best group is a1

community that corresponds to core classes of the project, as predicted in Sec. 4.2.2

Since the network represents a framework for graph and network analysis, these3

are actually different graphs, multigraphs, hypergraphs and trees. Note that the4

revealed group is not only very clear, but also rather exhaustive.5

On the other hand, the most significant group in colt network, which repre-6

sents a software library for high-performance scientific computing, is module-like7

and contains different implementations of matrices (e.g., dense, sparse or wrapped).8

Recall that the latter is consistent with the rationale behind the existence of mod-9

ules in software networks given in Sec. 4.2. Similarly as above, the group is indeed10

transparent, while the identifiers of the corresponding software classes are extremely11

consistent with each other [see Fig. 14(b)]. Thus, one can in fact derive templates12

for class identifiers (e.g., by mining common textual patterns [1]) and unique class13

dependencies on the level of groups of nodes in a software network (i.e., by analyzing14

corresponding node patterns). These can be adopted in future project development,15

in order to maintain a high consistency of a software system, to reduce code dupli-16

cation issues and other. Furthermore, one can also predict the package of a class.17

Classes of object-oriented software systems are organized into software packages18

that form a complex hierarchy. Each class is a member of exactly one package,19

whereas the classes can reside also in the inner nodes of the package hierarchy.20

For example, the group of nodes shown in Fig. 14(a) consists mostly of classes in21

edu.uci.ics.jung.graph package, while the group in Fig. 14(b) represents classes22

in cern.colt.matrix.impl package. To predict the package of some class given the23

group structure of the software network, we investigate the classes, whose nodes are24

residing in the same network groups as the concerned one. These classes are then25

weighted according to the Jaccard similarity [22] between the corresponding nodes’26

neighborhoods and their packages are taken as the candidates for the prediction.27

We select the most frequent package with respect to weights, while ties are broken28

uniformly at random (see [46, 47] for details). Note that, instead of considering29

nodes within the same network groups, one can of course examine merely nodes’30

neighbors or the entire network. For comparison, we also report the performance31

of a classifier that predicts the most frequent (i.e., majority) package within the32

software system for each class and a random classifier. However, the adoption of33

some more sophisticated approaches like deep belief nets [20] or structured support34

vector machine [50] would inevitably require the identification of learning features.35

Table 9 shows classification accuracy for software package prediction. Observe36

that the accuracy for the strategy based on network groups is around 75% in all cases37

except for the larger lucene network. We stress that the latter is an impressive result.38

Indeed, the task at hand represents an extremely difficult classification problem due39

to a large number of possible classifications, while this number is else two or three40

in most practical applications (see performance of the baseline classifiers). Note also41

that the strategy based on nodes’ neighbors performs very well in jbullet and jung42

networks with more community-like groups (see ⟨τ⟩ in Table 7), since the groups43

1450022-20

Page Proof

September 3, 2014 18:36 WSPC/S0219-5259 169-ACS 1450022

Node Mixing and Group Structure of Complex Software Networks

Table 9. Classification accuracy of software package prediction based on the node’s neighbors Γ
or groups S, or the entire network N (see text for details).

(%)

Network # Classesa # Packages Γ S N Majority Random

jbullet 107 11 72.0 75.7 64.5 28.0 8.6
colt 154 16 58.4 73.4 55.2 22.7 5.9
jung 237 31 72.2 74.2 65.0 11.4 3.3
lucene 1335 178 47.1 49.2 43.7 6.4 0.6

Note: Results are averages over 100 runs.
aAnalysis is reduced to nodes included in network groups.

Table 10. Classification accuracy of high-level software package prediction based on the node’s
neighbors Γ or groups S, or the entire network N (see text for details).

(%)

Network # Classesa # Packages Γ S N Majority Random

jbullet 107 5 84.6 85.0 78.5 64.5 20.4
colt 154 10 86.4 83.8 69.5 39.0 9.7
jung 237 5 89.1 90.5 91.1 44.3 20.3
lucene 1335 15 85.5 90.8 85.0 28.2 6.6

Note: Results are averages over 100 runs.
aAnalysis is reduced to nodes included in network groups.

well coincide with nodes’ neighborhoods. On the other hand, the neighbors are in1

fact different from one another in colt network with more module-like groups (see2

Sec. 4), which significantly decreases the performance.3

Table 10 shows also the accuracy for high-level software package prediction4

problem, where we consider only the packages at the topmost level of the package5

hierarchy. For jung network, these are graph, algorithms, io, visualization and6

visualization3d (prefix edu.uci.ics.jung is omitted). Again, the strategy based7

on network groups performs particularly well with classification accuracy around8

85–90%. Besides, the strategy based on nodes’ neighbors, and also the network-9

based strategy for jung network, obtains surprisingly high results, which further10

justifies the construction of software dependency networks (see Sec. 2).11

Thus, characteristic group structure of software networks can indeed be12

exploited to quite accurately infer the package hierarchy of software systems [46, 47].13

This has numerous applications. For instance, the framework can be used to predict14

packages of new classes introduced into an unknown software project or even the15

programming language itself, to detect possibly duplicated classes, or for merging16

classes across different software packages or libraries (one by one). Such tasks would17

else demand significant manual labor, especially for large and complex software sys-18

tems. Furthermore, network group detection can be adopted for software project19

refactoring, in order to derive either more modular or more functional software20

package hierarchy [47, 48] (i.e., community-like and module-like, respectively).21

1450022-21

Page Proof

September 3, 2014 18:36 WSPC/S0219-5259 169-ACS 1450022

L. Šubelj et al.

Table 11. Classification accuracy of class prediction for jung software network based on the
node’s neighbors Γ or groups S, or the entire network N (see text for details).

(%)

Prediction # Categories Γ S N Majority Random

Class type 2 65.0 85.2 84.8 84.4 49.9
Class version 9 67.7 72.8 66.2 44.3 11.2
Class author 11 71.6 71.0 70.9 44.3 9.2

Note: Results are averages over 100 runs.

As shown below, characteristic groups in software networks can also be used to1

infer the name of the developer that implemented a particular class, the exact ver-2

sion at which it was introduced into the project or its type (i.e., class or interface).3

However, as this information was largely unavailable or could not be obtained auto-4

matically for the software projects considered, we only report the results for jung5

network. The prediction else proceeds exactly the same as before, while the classes6

with unknown version or author information are grouped into a single category.7

Table 11 shows the classification accuracy for different software prediction prob-8

lems. For class type prediction, the strategy based on network groups performs only9

slightly better than the baseline approach that classifies all software classes into the10

same category. On the other hand, the performance is significantly improved in the11

case of class version and author prediction problems with accuracy over 70%. This is12

not very surprising, since classes with the same functionality that appear as differ-13

ent groups in software networks are commonly introduced within the same version14

of the software project and implemented by the same developer.15

Furthermore, according to Sec. 4.2, the quality of network group structure16

reflects different programming principles and paradigms. Since this can be mea-17

sured by degree-corrected group clustering mixing (see Sec. 4.3), the latter enables18

different applications in software development and quality control.19

6. Conclusion and Future Work20

The present paper rigorously analyzes the structure of complex software networks.21

These can be seen as an interplay between a dense structure of social networks and22

a sparse topology of the Internet. In particular, we show that software networks23

reveal characteristic node group structure, which consists of dense communities,24

sparse module-like groups and also different mixtures of these. Communities imply25

assortative mixing by degree, whereas just the opposite holds for the modules.26

Thus, software networks reveal dichotomous degree mixing that is assortative in the27

out-degrees and disassortative in the in-degrees. Furthermore, communities appear28

in denser regions with higher clustering, while most pronounced modules occupy29

sparse regions with very low clustering. The latter in fact promotes degree-corrected30

clustering assortativity, which is observed in all of the networks analyzed.31

1450022-22

Page Proof

September 3, 2014 18:36 WSPC/S0219-5259 169-ACS 1450022

Node Mixing and Group Structure of Complex Software Networks

Besides, the group structure of software networks also coincides with the intrin-1

sic properties of the underlying software systems. The paper thus includes some2

preliminary work on practical applications of network group detection in software3

engineering. Nevertheless, their true practical value in real scenarios remains some-4

what unclear and will be more throughly investigated in the future.5

The study of differences between software and social networks, and the Internet,6

reveals notably distinct network topologies that are most likely governed by differ-7

ent phenomena. We stress that dichotomous node degree mixing has not yet been8

observed in the case of directed networks. Furthermore, preliminary results show9

that the existing graph models do not produce degree-corrected clustering assorta-10

tivity of real-world networks. The latter will be the main focus of our future work.11

Additionally, the paper implies several other prominent directions for future12

research. First, the observed node mixing and group structure might also apply to13

different software and other real-world networks. Among these, various informa-14

tion networks seem most promising. Next, characteristic group structure revealed15

for software networks might be further related to other properties, e.g., self-16

similarity [4] or hierarchical structure [55]. Last, although we provide some rationale17

for the presence of groups in software networks, a generative graph model is still18

an open issue.19

Acknowledgments20

This work has been supported in part by the Slovenian Research Agency Program21

No. P2-0359, by the Slovenian Ministry of Education, Science and Sport Grant22

No. 430-168/2013/91, and by the European Union, European Social Fund.23

References24

[1] Baeza-Yates, R. and Ribeiro-Neto, B., Modern Information Retreival (Addison-25

Wesley, Harlow, UK, 1999).26

[2] Barabási, A. L. and Albert, R., Emergence of scaling in random networks, Science27

286 (1999) 509–512.28

[3] Baxter, G., Frean, M., Noble, J., Rickerby, M., Smith, H., Visser, M., Melton, H. and29

Tempero, E., Understanding the shape of java software, in Proc. ACM Int. Conf.30

Object-Oriented Programming, Systems, Languages, and Applications (Portland, OR,31

USA, 2006), pp. 397–412.32

[4] Blagus, N., Šubelj, L. and Bajec, M., Self-similar scaling of density in complex real-33

world networks, Physica A 391 (2012) 2794–2802.34

[5] Cai, K.-Y. and Yin, B.-B., Software execution processes as an evolving complex35

network, Inform. Sci. 179 (2009) 1903–1928.36

[6] Chidamber, S. and Kemerer, C., A metrics suite for object oriented design, IEEE37

Trans. Softw. Eng. 20 (1994) 476–493.38

[7] Clauset, A., Shalizi, C. R. and Newman, M. E. J., Power-law distributions in empirical39

data, SIAM Rev. 51 (2009) 661–703.40

[8] Concas, G., Locci, M. F., Marchesi, M., Pinna, S. and Turnu, I., Fractal dimension41

in software networks, Europhys. Lett. 76 (2006) 1221–1227.42

1450022-23

Page Proof

September 3, 2014 18:36 WSPC/S0219-5259 169-ACS 1450022

L. Šubelj et al.

[9] Concas, G., Marchesi, M., Pinna, S. and Serra, N., Power-laws in a large object-1

oriented software system, IEEE Trans. Softw. Eng. 33 (2007) 687–708.2

[10] Danon, L., Dı́az-Guilera, A., Duch, J. and Arenas, A., Comparing community struc-3

ture identification, J. Stat. Mech. (2005) P09008.4

[11] Erdős, P. and Rényi, A., On random graphs i, Publ. Math. Debrecen 6 (1959) 290–297.5

[12] Fortuna, M. A., Bonachela, J. A. and Levin, S. A., Evolution of a modular software6

network, Proc. Natl. Acad. Sci. USA 108 (2011) 19985–19989.7

[13] Fortunato, S., Community detection in graphs, Phys. Rep. 486 (2010) 75–174.8

[14] Foster, J. G., Foster, D. V., Grassberger, P. and Paczuski, M., Edge direction and9

the structure of networks, Proc. Natl. Acad. Sci. USA 107 (2010) 10815–10820.10

[15] Gao, Y., Xu, G., Yang, Y., Liu, J. and Guo, S., Disassortativity and degree distri-11

bution of software coupling networks in object-oriented software systems, in Proc.12

IEEE Int. Conf. Progress in Informatics and Computing (Shanghai, China, 2010),13

pp. 1000–1004.14

[16] Girvan, M. and Newman, M. E. J., Community structure in social and biological15

networks, Proc. Natl. Acad. Sci. USA 99 (2002) 7821–7826.16

[17] Glover, F., Tabu search, ORSA J. Comput. 1 (1989) 190–206.17

[18] Han, J.-D. J., Bertin, N., Hao, T., Goldberg, D. S., Berriz, G. F., Zhang, L. V.,18

Dupuy, D., Walhout, A. J. M., Cusick, M. E., Roth, F. P. and Vidal, M., Evidence for19

dynamically organized modularity in the yeast protein-protein interaction network,20

Nature 430 (2004) 88–93.21

[19] Hao, D. and Li, C., The dichotomy in degree correlation of biological networks, PLoS22

One 6 (2011) e28322.23

[20] Hinton, G. E., Osindero, S. and Teh, Y.-W., A fast learning algorithm for deep belief24

nets, Neural Comput. 18 (2006) 1527–1554.25

[21] Hyland-Wood, D., Carrington, D. and Kaplan, S., Scale-free nature of java software26

package, class and method collaboration graphs, in Proc. Int. Symp. Empirical Soft-27

ware Engineering (Rio de Janeiro, Brazil, 2006), pp. 1–10.28

[22] Jaccard, P., Étude comparative de la distribution florale dans une portion des alpes29

et des jura, Bull. Soc. Vaud. Sci. Nat. 37 (1901) 547–579.30

[23] Kohring, G. A., Complex dependencies in large software systems, Adv. Complex Syst.31

12 (2009) 565–581.32

[24] LaBelle, N. and Wallingford, E., Inter-package dependency networks in open-source33

software, in Proc. Int. Conf. Complex Systems (Boston, MA, USA, 2006), pp. 1–8.34

[25] Lancichinetti, A., Kivela, M., Saramaki, J. and Fortunato, S., Characterizing the35

community structure of complex networks, PLoS One 5 (2010) e11976.36

[26] Leskovec, J., Kleinberg, J. and Faloutsos, C., Graphs over time: Densification laws,37

shrinking diameters and possible explanations, in Proc. ACM SIGKDD Int. Conf.38

Knowledge Discovery and Data Mining (Chicago, IL, USA, 2005), pp. 177–187.39

[27] Li, H., Zhao, H., Cai, W., Xu, J.-Q. and Ai, J., A modular attachment mechanism40

for software network evolution, Physica A 392 (2013) 2025–2037.41

[28] Lorrain, F. and White, H. C., Structural equivalence of individuals in social networks,42

J. Math. Sociol. 1 (1971) 49–80.43

[29] Maslov, S. and Sneppen, K., Specificity and stability in topology of protein networks,44

Science 296 (2002) 910–913.45

[30] Myers, C. R., Software systems as complex networks: Structure, function, and evolv-46

ability of software collaboration graphs, Phys. Rev. E 68 (2003) 046116.47

[31] Newman, M. E. J., Assortative mixing in networks, Phys. Rev. Lett. 89 (2002) 208701.48

[32] Newman, M. E. J., Mixing patterns in networks, Phys. Rev. E 67 (2003) 026126.49

1450022-24

Page Proof

September 3, 2014 18:36 WSPC/S0219-5259 169-ACS 1450022

Node Mixing and Group Structure of Complex Software Networks

[33] Newman, M. E. J., Finding community structure in networks using the eigenvectors1

of matrices, Phys. Rev. E 74 (2006) 036104.2

[34] Newman, M. E. J., Communities, modules and large-scale structure in networks, Nat.3

Phys. 8 (2012) 25–31.4

[35] Newman, M. E. J. and Leicht, E. A., Mixture models and exploratory analysis in5

networks, Proc. Natl. Acad. Sci. USA 104 (2007) 9564.6

[36] Newman, M. E. J. and Park, J., Why social networks are different from other types7

of networks, Phys. Rev. E 68 (2003) 036122.8

[37] Palla, G., Derényi, I., Farkas, I. and Vicsek, T., Uncovering the overlapping commu-9

nity structure of complex networks in nature and society, Nature 435 (2005) 814–818.10

[38] Pastor-Satorras, R., Vázquez, A. and Vespignani, A., Dynamical and correlation11

properties of the internet, Phys. Rev. Lett. 87 (2001) 258701.12

[39] Pinkert, S., Schultz, J. and Reichardt, J., Protein interaction networks: More than13

mere modules, PLoS Comput. Biol. 6 (2010) e1000659.14

[40] Porter, M. A., Onnela, J.-P. and Mucha, P. J., Communities in networks, Not. Am.15

Math. Soc. 56 (2009) 1082–1097.16

[41] Ravasz, E., Somera, A. L., Mongru, D. A., Oltvai, Z. N. and Barabási, A. L., Hierar-17

chical organization of modularity in metabolic networks, Science 297 (2002) 1551–18

1555.19

[42] Schaeffer, S. E., Graph clustering, Comput. Sci. Rev. 1 (2007) 27–64.20

[43] Soffer, S. N. and Vázquez, A., Network clustering coefficient without degree-21

correlation biases, Phys. Rev. E 71 (2005) 057101.22

[44] Solé, R. V., Ferrer-Cancho, R., Montoya, J. M. and Valverde, S., Selection, tinkering,23

and emergence in complex networks, J. Complexity 8 (2003) 20–33.24

[45] Stevens, W. P., Myers, G. J. and Constantive, L. L., Structured design, IBM Syst.25

J. 38 (1999) 231–256.26

[46] Šubelj, L. and Bajec, M., Community structure of complex software systems: Analysis27

and applications, Physica A 390 (2011) 2968–2975.28

[47] Šubelj, L. and Bajec, M., Software systems through complex networks science:29

Review, analysis and applications, in Proc. KDD Workshop on Software Mining30

(Beijing, China, 2012), pp. 9–16.
31

[48] Šubelj, L. and Bajec, M., Ubiquitousness of link-density and link-pattern communities32

in real-world networks, Eur. Phys. J. B 85 (2012) 32.33

[49] Šubelj, L., Blagus, N. and Bajec, M., Group extraction for real-world networks: The34

case of communities, modules, and hubs and spokes, in Proc. Int. Conf. Network35

Science (Copenhagen, Denmark, 2013), pp. 152–153.36

[50] Tsochantaridis, I., Joachims, T., Hofmann, T. and Altun, Y., Large margin methods37

for structured and interdependent output variables, J. Mach. Learn. Res. 6 (2005)38

1453–1484.39

[51] Turnu, I., Concas, G., Marchesi, M. and Tonelli, R., The fractal dimension of software40

networks as a global quality metric, Inform. Sci. 245 (2013) 290–303.41

[52] Valverde, S., Cancho, R. F. and Solé, R. V., Scale-free networks from optimal design,42

Europhys. Lett. 60 (2002) 512–517.43

[53] Valverde, S. and Solé, R. V., Logarithmic growth dynamics in software networks,44

Europhys. Lett. 72 (2005) 858–864.45

[54] Valverde, S. and Solé, R. V., Network motifs in computational graphs: A case study46

in software architecture, Phys. Rev. E 72 (2005) 026107.47

[55] Valverde, S. and Solé, R. V., Hierarchical small worlds in software architecture, Dyn.48

Cont. Dis. Ser. B 14 (2007) 1–11.49

1450022-25

Page Proof

September 3, 2014 18:36 WSPC/S0219-5259 169-ACS 1450022

L. Šubelj et al.

[56] Vázquez, A., Pastor-Satorras, R. and Vespignani, A., Large-scale topological and1

dynamical properties of the internet, Phys. Rev. E 65 (2002) 066130.2

[57] Watts, D. J. and Strogatz, S. H., Collective dynamics of “small-world” networks,3

Nature 393 (1998) 440–442.4

[58] White, H. C., Boorman, S. A. and Breiger, R. L., Social structure from multiple5

networks: Block models of roles and positions, Am. J. Sociol. 81 (1976) 730–779.6

[59] Zhao, Y., Levina, E. and Zhu, J., Community extraction for social networks, Proc.7

Natl. Acad. Sci. USA 108 (2011) 7321–7326.8

1450022-26

