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Abstract—Machine understanding of textual documents has
been challenging since the early computer era. Since the in-
formation extraction research field emerged it has inferred
multiple natural language processing tasks, such as named entities
recognition, relationships extraction and coreference resolution.
Even though for the purpose of the end-to-end information
extraction all of the three tasks are crucial, existing work has
been focusing merely on one specific task at the time or at best
on their connection in a pipeline. In this paper we introduce
a novel iterative and joint information extraction system that
interconnects all the three tasks together using iterative feature
functions which use the advantage of the intermediate extractions.
Furthermore, we introduce a special transformation of data into
skip-mention sequences to enable the extraction of relations and
coreferences using fast first-order graphical models. Additionally,
the system uses an ontology as its knowledge source, as a list of
inferred extraction rules, and as a data schema of extracted re-
sults. Experimental results show that the accuracy of extractions
improves after each iteration. In particular, our model obtained a
15% error reduction on named entity recognition over individual
models.

I. INTRODUCTION

Information extraction (IE) gained importance in the 1970s,
when early systems were focused mostly on the automatic
detection of named entities in textual data [1]. Since then,
a large number of IE systems dealing with entity extraction,
relation extraction, and/or coreference resolution tasks have
been proposed in the literature [2], along with the latest based
on ontologies [3]. Information extraction [2] thus attempts
to analyze text and extract its structured semantic contents.
The extracted results therefore enable new ways to query,
organize, analyze or visualize data. These type of information
systems thus ease web searching by the use of structured data,
automatically extract opinions, structurally compare products
from unstructured reviews, etc. Recently, the same techniques
were adopted in bioinformatics field to extract biological
objects (e.g. proteins, genes), their interactions and experiment
results from the vast biomedical databases [4]. Information
extraction techniques have roots in the natural language pro-
cessing community, as text was one of the first and still is
highly important unstructured information source in the field.
Nevertheless, the term is also used to extract structured data
from arbitrary source types such as, videos, images or sounds.

The most important information extraction tasks consist of
named entity recognition or entity tagging, relationship extrac-
tion and coreference resolution (i.e., clustering of mentions to
an entity). Prior to employing these tasks, input data needs to

be preprocessed. During the data preprocessing, we transform
the input into the appropriate data representation and enrich
it with additional data (e.g., lemmas, part of speech tags) that
improves the whole information extraction. The entity tagging
task takes a sentence of words or symbols (i.e., tokens) as an
input and detects the entity type for each token, which can
be, for example, a person, a location or an organization. The
relationship extraction identifies relationships (e.g., works at, is
a) between text phrases (Figure 1). These phrases are attributes
of a relationship and are called mentions. The coreference
resolution task [5] is the task of detecting mentions in the
text that refer to the same underlying entity [6] (i.e., the
subject of the discussion that is then digressed, changed, etc.).
Mentions can be of either named (e.g., “John Doe”), nominal
(e.g., the guy with the glasses), or pronominal type (e.g., he or
him) [7]. The goal of coreference resolution is thus to detect
groups of mentions that refer to the same real-world entities.
To accomplish this, one employs, apart from an initial text
preprocessing, mention detection (i.e., identification of phrases
that represent valid entity mentions), and mention clustering
(i.e., determining which pairs of mentions corefer). Since the
former can be solved in a rather straightforward fashion [8],
we here consider only the last (we assume that the mentions
in the text are given). In Figure 2 we show an example of an
end-to-end information extraction using all the three tasks in
a text document.

subject object

relation

Fig. 1. General relation representation. Each relation (e.g., Jena works at
OBI) is defined with a name (e.g. worksAt) and subject (e.g. Jena) and object
(e.g. OBI) relationship attributes.

The early information extraction research was strongly
driven by Message Understanding Conference (MUC) com-
petitions from 1987 (MUC-1) to 1997 (MUC-7). Initial chal-
lenges focused merely on named entity recognition. Later,
important competitions supporting more tasks and containing
larger data corpuses emerged, like Automatic Content Ex-
traction (ACE) [9], Semantic Evaluation (SemEval) [10] and
Conference on Natural Language Learning (CoNLL) Shared
Tasks [11]. In the biomedical field the BioCreative challenges
I and II focused only on the detection of protein/gene mentions
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John is married to Jena. He is a mechanic at OBI and she works there. It is a DIY market.
Person Person Job title Organization Organization

worksAtworksAt isA

hasProfession

marriedTo

Fig. 2. Information extraction. Representation of the main information extraction tasks named entity recognition (e.g., person, job title, organization),
relationship extraction (e.g., married to, works at) and coreference resolution (i.e., dashed line connecting mentions that represent the same underlying entity).

[12]. Furthermore, the LLL [13] and BioNLP [4] challenges
addressed other information extraction tasks, such as corefer-
ence resolution and relation extraction.

In this paper we propose an iterative joint system for end-
to-end information extraction which combines named entity
recognition, relationship extraction, and coreference resolution.
We expect that by taking into account intermediate extractions
from other tasks will improve the overall performance of
the system in each iteration. We also propose novel trans-
formations of data into skip-mention sequences so that we
can model all of the three tasks with linear-chain conditional
random fields model. The model is traditionally successful for
named entity recognition. It offers fast training and inference
with great support for a lot of features. Furthermore, we
evaluate the proposed system on ACE 2004 dataset, achieve
comparable results to the state-of-the art systems, detect minor
improvements over the three iterations, and achieve a 15% of
error reduction for named entity recognition.

The rest of the paper is structured as follows. In the
following section we present an overview of the related work
for all the three information extraction tasks and previous work
on joint data extraction. Next we introduce the conditional
random fields algorithm with basics of sequence labeling and
feature functions definition. In Section 4 we present our pro-
posed system for iterative joint information extraction. First,
we introduce an appropriate data representation and show the
motivation for the selected approach for all the three tasks. This
makes the extraction possible using linear-chain conditional
random fields. Second, we explain the whole system with the
system ontology and categorize feature functions that we use.
In Section 5 we show the results of the evaluation of the
proposed system, then discuss the results, and then provide
a conclusion.

II. RELATED WORK

A majority of research in information extraction focuses
on individual tasks or on a connection of them into a simple
pipeline [2]. The latest results show that the named entity
recognition is solved quite well, achieving around 90% or
more F-score on general data sets, while coreference resolution
achieves about 70%, and relationship extraction around 50%.

Named entity recognition is one of the first researched tasks
with a variety of different approaches proposed. Traditional
ones are roughly classified as pattern-based and machine-
learning-based. The first ones extract entities using some

templates, dictionaries or predefined set of rules [14], [15],
[16], while the latter employ machine learning classifiers and
induction methods [17], [18] to label tokens with a predefined
set of entities. The task is defined as a sequence labeling
task and thus a lot of approaches use sequence classifiers
such as, hidden Markov models, maximum entropy models
or conditional random fields [19].

Relationship extraction systems generally categorize them-
selves into two categories. Feature based systems use a variety
of lexical, syntactic and semantic features [20], [21]. The
other common approach uses kernel methods [22], [23]. Some
methods also cast the task as a sequence labeling task and
tag text phrases (i.e., relationship descriptors) that represent a
predefined relationship [24]. On the other hand, in the subfield
of open information extraction some unsupervised approaches
that extract arbitrary relationships were proposed [25], [26],
but they do not classify them or their attributes.

The majority of techniques for coreference resolution trans-
form the problem into a pairwise classification task [27],
[28] (i.e., the algorithm checks every pair of mentions for
coreference). This enables the use of standard machine learning
classifiers. Thus, a number of innovative and linguistic-rich
feature functions [28], [29], along with different algorithms
like maximum entropy [30], SVM classifiers [31] and Markov
Logic Networks [32], have been proposed in the recent liter-
ature. On the other hand, unsupervised techniques infer the
coreferentiality based on sequences of mentions [8], [33],
which are much harder to train and are not easily generalized
to new problems or domains but achieve state-of-the-art results
on known domains. McCallum et al. [34] was the first to
propose the three general conditional random fields (CRF)
models to solve the coreference resolution problem. The first is
a general model (i.e., the CRF structure is unrestricted) and the
training or inference is therefore complex. The second model
represents pairs of mentions by specific attributes, while the
third represents the pairs as nodes in the model. Wellner et
al. [35] successfully applied coreference resolution to citation
matching, interestingly by using a special case of McCallum’s
first model combined with named entity extraction. Due to
the tractability issues of general models, an extension of skip-
chain CRF has been proposed [36], which also supports the
use of long-distance dependencies by incorporating additional
cliques into the model. Cullota et al. [27] proposed the use of
first-order probabilistic models over sets of mentions; thus, the
algorithm operates directly on the entities.



Ontology-based information extraction has recently em-
erged as an important subfield of information extraction [3].
Ontologies represent an additional knowledge that can be
efficiently employed during the extraction process [37], [38],
[39]. Most modern systems use a single ontology for domain
representation [40], however, there is no rule against using a
combination of them.

In contrast to individual or pipeline-based approaches, the
idea of iterative or joint information extraction by multiple
subtasks tries to interconnect the tasks together with some
mutual benefits [41]. It was first employed in named entity
recognition by exploiting mutual influence between possible
extractions [42]. Then some systems that jointly extracted
entities and relationships using an ontology and rules were
proposed [43]. Further, Yu and Lam [44] modeled the ex-
tractions of both using a discriminaive model. Roth and Yih
[45] proposed the inductive logic programming framework to
provide manual constraints between the tasks. Yao et al. [46]
automatically inferred such rules through distant supervision
via Wikipedia. The only work that is similar to ours in
sense of jointly modeling all the three tasks was presented
by Singh et al. [47]. They proposed a joint CRF model and
an improved version of belief propagation to solve all three
tasks with a single model. Other researchers have also tried to
combine parsing with named entity recognition and semantic
role labeling [48] or applied various information extraction
tasks to citation segmentation and matching [49], [50], [35]
and to other domains [51], [52].

III. CONDITIONAL RANDOM FIELDS

Conditional random fields (CRF) [53] is a discriminative
model that estimates the joint distribution p(y|x,w) over the
target sequence y conditioned on the observed sequence x and
weight vector w (see below). We represent a sentence by a
sequence of words xi with additional corresponding sequences
that represent attribute values such as, part-of-speech tags xk1

i ,

lemmas xk2
i , relationships xk3

i , and other observable values

x
kj

i . These values are used by feature functions fl that are
weighted during CRF training in order to model the target se-
quence y. The sequence y corresponds to the source sequence
and consists of the labels that we would like to automatically
infer. For the named entity recognition target sequence we
commonly use labels such as PERSON, ORGANIZATION or
LOCATION. For relationship extraction we tag current token
with a name of relationship (e.g., WORKS AT, IS A) if it is
related to the previous token. For the coreference resolution
task we tag a token with C if it is coreferent with the previous
one, which is similar like in case of relationship extraction. In
other cases, when there exist no entity, no relationship or no
coreferentiality, we tag a token with O.

In the field of IE, CRFs have been successfully employed
for various sequence labeling tasks and have achieved state-
of-the-art results. They can also deal with a large number of
multiple, overlapping, and non-independent features.

Training a CRF is thus maximizing the conditional log-
likelihood of the training data, by which we find a weight
vector w that predicts the most probable sequence ŷ for given
x. Hence,

ŷ = argmax
y

p(y|x,w) (1)

where the conditional distribution is

p(y|x,w) =
exp

[∑m
l=1 wl

∑length(x)
i=1 fl(y, x, i)

]
C(x,w)

(2)

Here, m is the number of feature functions and C(x,w) is
a normalization constant computed over all possible sequences
y.

The structure of a CRF defines how the dependencies with
target labels are modeled. A general graphical model (i.e.,
a graph denoting the conditional dependence structure) can
depend on many labels and is therefore intractable for training
or inference without complex approximation algorithms. Thus,
we use only a simple linear-chain CRF (LCRF) model, which
depends on the current and previous labels (i.e., a first order
model). The structure of such a model is illustrated in Figure 3.
Furthermore, with the use of a number of feature functions and
special dataset transformations, our method achieves compa-
rable results to the best known systems.

y1

x1

yn

xn

y2

x2

y3

x3

Fig. 3. The structure of a linear-chain CRF model. The model shows
an observable sequence x (e.g., words) and a target sequence y (e.g., named
entity tags, relationship tags, coreferentiality) containing n tokens.

Feature function modelling is an essential part of training
a CRF. Selection of best feature functions may contribute to
an increase in precision and recall when CRF classifiers are
trained in a way that they achieve the highest level possible.
Usually, these are given as templates and the final features are
generated by scanning the entire training data set. The selection
of informative features is the main source for an increase of
precision and recall when training machine learning classifiers.
Feature functions are usually implemented as templates and
the final features are then generated by scanning the entire
training data. In natural language processing, a few thousand
or more features are commonly used, which can be efficiently
handled by a CRF. A feature function that returns 1 if the
current mention is of a person type or the previous mention is
equal to “Mr.” and 0 otherwise, is defined as follows:

fl(y, x, i) =

{
1, if yi = PER ∨ xi−1 = “Mr.”

0, if otherwise

IV. ITERATIVE JOINT INFORMATION EXTRACTION

In this section we present our proposed system for iterative
joint information extraction. First, we introduce novel data rep-
resentation for all of the tasks along with extraction examples



using LCRF models. We then provide an overview of the end-
to-end information extraction system that consists of input data
preprocessing, iterative extractors that use an ontology with a
data integration component which combines their results over
multiple iterations.

A. Data representation

In the following subsections we introduce the data rep-
resentation to enable the information extraction for all the
three IE subtasks with LCRF models. For the named entity
recognition we train the extraction models on a token-based
sequences, while for relationship extraction and coreference
resolution we use mention-based sequences. We represent
mentions only as a subsequence of a token sequence and thus
we work on the same data set with no special transformations
for all three tasks.

1) Named entity recognition: Named entity recognition is
the task of classifying tokens into the types of entities they
refer to. We represent an input sequence x as a tokenized
sentence, where each token is a word or other symbol. The
result is a labeled target sequence y with predefined entity
tags such as PERSON, ORGANIZATION or LOCATION. In
Figure 4 we show a representation of the previous example
(Figure 2) in our proposed system. To tag entities we follow
traditional approach of tagging with first-order models, which
we incorporate into an iterative method and extract entities
jointly with relationship extraction and coreference resolution
tasks.

PERSON

John

O

is

O

to

PERSON

Jena

O

.

O

married

Fig. 4. Named entity recognition input sequence. The token-based sequence
that is used by named entity recognition models for tagging with entity type
tags.

2) Relationship extraction: The goal of the relationship
extraction task is to identify relations between the two selected
mentions. If we process the input sequences as is, we cannot
model the dependencies between two consecutive mentions
because there can be many other tokens in between. From
the example (Figure 2) in the previous section we can observe
the limitation of modeling just two consecutive tokens. With
this type of labeling it is hard to extract the relationships using
a first-order model. Also, we are not interested in identifying
relation descriptors (i.e. segments of text that best describe
a pre-defined relation); therefore, we generate new sequences
containing only mentions. Mentions are also the only tokens
that can stand as an attribute of a relation. In Figure 5 we show
the transformation of our example into a mention sequence.
The observable sequence x contains sorted entity mentions
from a sentence that is annotated. These annotations are part
of the training corpus.

The target sequence y is tagged with the none symbol (i.e.
O) or the name of the relationship (e.g. located, near, member
of). Each relationship target token represents a relationship
between the current and the previous observable mention.

O

John

marriedTo

Jena

O

He

hasProfession

mechanic

O

OBI

worksAt

O

she

worksAt

there

O

It

isA

DIY market

Fig. 5. Zero skip-mention sequence for relationship extraction. The initial
mention sequence that contains all the mentions (i.e. zero skip-mention) from
the example in Figure 2.

The mention sequence as demonstrated in Figure 5 does
not model the relationships that exist between distant mentions.
For example, the mentions He and OBI are related by a works
at relationship, which cannot be identified using only a LCRF.
A linear model can only detect dependencies between two
consecutive mentions. To model such relationships on different
distances, we generate appropriate skip-mention sequences.
The notion of skip-mention stands for the number of other
mentions between two consecutive mentions which are not
included in a specific skip-mention sequence. Thus, to model
relationships between every second mention, we generate two
one skip-mention sequences for each sentence. A one skip-
mention sequence identifies the works at relation, shown
in Figure 6.

O

John

O

He

worksAt

OBI

O

there

O

DIY market

Fig. 6. One skip-mention sequence for relationship extraction. One out
of two possible one skip-mention sequences, generated from the initial zero
skip-mention sequence [John, Jena, He, mechanic, OBI, she, there, It, DIY
market]. The other one consists of tokens Jena, mechanic, she and It.

Figure 7 shows the distribution of distances between the
relation mention attributes (i.e. agents and targets) in the
ACE 2004 training data set. From the distance distribution we
observe that the majority of relations connect their attributes
on distances of two mentions. It also shows the need to
transform our data into skip-mention sequences. Without this
transformation the linear-chain CRF model, at best, would only
be able to uncover relations with attributes at zero distance (i.e.
directly consecutive mentions).

3) Coreference resolution: The goal of coreference resolu-
tion task is to identify, which mentions corefer (i.e. represent
the same underlying entity). Since we focus exclusively on
the use of LCRF models only, we can identify only the
coreferences over two directly consecutive mentions. Thus,
to detect coreferences over larger distances, i.e., having one,
two, three, or more mentions in between, we also propose a
skip-mention data set transformation in the same way as for
relationship extraction (see previous section).

For this task the observable sequence x denotes a sequence
of all mentions within a document. Mentions xi are ordered by
their occurrence in the document. From our example document
(Figure 2) we select all entity mentions into a zero-skip
mention sequence x = [John, Jena, He, mechanic, OBI,
she, there, It, DIY market] that is used for training.
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Fig. 7. Distributions of distances between relationship attributes on ACE
2004 data set. Distance x between two relationship mention attributes means
that there exist x other mentions between them.

Our goal now is to detect the target clusters for each entity
xJohn ={John, He}, xJena = {Jena, she}, xOBI = {OBI,
there, It, DIY market}.

In some cases one mention could overlap with another
mention. We treat such pairs as separate mentions and order
them lexicographically by the index of the first word and
mention length.

In Figure 8 we show a training mention sequence x,
which is applicable to first-order probabilistic models. We
call it a ‘zero skip-mention sequence’ because it includes
all mentions from a document and there are no (i.e., zero)
other mentions between any two consecutive mentions in it.
To identify coreferent mentions, we first need to label it using
the labels {O,C}. The label C states that the current mention
is coreferent with the previous one, whereas O states that
the current mention is not coreferent with the previous one.
Our models are learned over these labels so as to be able
to infer new labels for unseen mention sequences. Observe
that for the selected example, first-order models could detect
just three coreferent mentions {there, It,DIY Market}. To
solve the problem of identification of coreferent mentions at
longer distances (e.g., OBI and there), we introduce further
transformations.

O

John

O

Jena

O

He

O

mechanic

O

OBI

O

she

O

there

C

It

C

DIY market

Fig. 8. Zero skip-mention training sequence for coreference resolution.
Initial mention sequence that contains all mentions from the input text. If
the current mention is coreferent with the previous one, it is labeled with C,
otherwise with O.

We propose additional transformations, which generate
multiple sequences and enable us to uncover all three clus-
ters from the document x. Additional mention sequences

are generated from the initial mention sequence x and are
labeled accordingly, using {O,C} labels. For instance, if we
decide to use skip-mention distances ranging from zero to
three, we transform the data set into four sequence types:
zero, one, two and three skip-mention types. We also train
a separate CRF model for each type, which enables us to
tag new unseen data for specific skip-mention distance type.
From the document x above, additional one skip-mention
sequences are presented in Figure 9. By employing one
skip-mention sequences, we extend our results by two new
pairs {John, He} and {OBI, there}. Then, after inference
over two and three skip-mention sequences, we get our fi-
nal missing pairs {OBI, It} and {Jena, she}. Lastly, we
perform mention clustering and return target entity clusters
xJohn, xJena and xOBI.

O

John

O

Jena

C

He

O

mechanic

O

OBI

O

she

C

there

O

It

C

DIY market

Fig. 9. One skip-mention training sequences for coreference resolution.
Mention sequences that include every second mention (i.e., one skip-mention)
from the input document. If the current mention is coreferent with the previous
one, it is labeled with C, otherwise with O.

To support our idea, we show the distribution of distances
between two consecutive coreferent mentions (see Figure 10)
in the ACE 2004 data set. Although the figure shows the
distribution for only the selected data set, it is representative
enough to illustrate the general problem, which is the same
for all other existing coreference resolution data sets (e.g., Se-
mEval 2010, CoNLL 2012). According to the distribution, only
35% of the directly consecutive mention pairs are coreferent.
Taking into account all mention pairs up to a distance of 20,
cumulatively, 90% of the mention pairs can be identified. With
distances up to 50, about 97% of the mention pairs can be
identified. However, by using longer or all possible distances,
the accuracy of a general coreference system is not expected
to increase since there are more precision errors. To overcome
such problems, we select a promising cut-off point at distance
of 25 (see Figure 11).

As shown in the example above, the transformation into
higher skip-mention sequences returns more sequences per
document. Intuitively, at distance zero, we get one training
sequence per document (it contains all document mentions).
At distance one, we get two sequences (each contains every
second mention). At distance two, we get three sequences, etc.
Therefore, the transformation into d skip-mention sequences
returns d+1 sequences of length �n

d �, where n is the number
of all mentions in the document.
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visualization (i.e., 1533 mentions).
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Fig. 11. Coreference resolution results using different skip-mention
sequences. Evaluation of the proposed coreference resolution approach on
the ACE 2004 dataset.

We use LCRF models and skip-mention sequences as input
to the models for both relationship extraction and coreference
resolution. Thus, the extraction technique is similar for both
tasks. The main difference is in the target sequence labeling
and representation of the tagged data. For relationship extrac-
tion task we check tagged labels to infer extracted relations
between the input mentions. For the coreference resolution task
we perform agglomerative clustering based on tagged labels to
infer clusters of mentions, which represent the final entities.
For a high level representation of data flow for both tasks using
the proposed approach, see Figure 12.

B. Proposed system

We propose a modular end-to-end information extraction
system that jointly and iteratively combines multiple extractors
(Figure 13). The system consists of preprocessing component,
three extractors that use an ontology via semantic feature
functions, and data integration component. The input to the
system consists of unstructured text documents and the system

returns a graph-based representation of extractions that comply
with the system ontology. Full implementation of the system
is publicly available [54] and uses CRFSuite [55] for faster
CRF training and inference and OpenNLP toolkit [56] for
preprocessing tasks.

John, He

Jena, she

OBI, there, It

mechanic

DIY market

worksAt

marriedTohasProfession

isA

Ontology

Data 
integration

Named entity 
recognition

Relationship 
extraction

Coreference 
resolution

worksAt

Token detection
Sentence detection
Part-of-speech tagging

Input text Preprocessing

Extraction

Ontology-based output

Shallow parsing
Lemmatization
Dependency parsing

Fig. 13. Iterative joint information extraction system. The system
consists of preprocessing and extraction components. The extraction com-
ponent iteratively connects named entity recognition, relationship extraction
and coreference resolution using a data integration method, and provides
connection to the system ontology.

1) Preprocessing: Preprocessing module enriches the input
data with additional attributes required in the subsequent
modules. In particular, the module detects sentence and word
boundaries, lemmatizes the words, performs part-of-speech
tagging, dependency parsing, mention detection, and shallow
parsing. Note that this is the only part of the system that
is language dependent. When no preprocessing methods are
available for a certain language, the module must at least be
able to identify sentence and word boundaries.

2) Extraction: The extraction consists of the iterative
method and data integration method that combines interme-
diate extractions, which can be used for further extractions to
improve the system performance of the system. In the iterative
method we separately employ named entity recognition, rela-
tionship extraction, and coreference resolution extractors. The
extraction is performed on the same data set and with the same
type of LCRF classifier for all three tasks, so there is no need
for special transformations between the tasks. We only need
to map tokens with mentions because named entity recognizer
works over token-level sequences, while relationship extractor
and coreference resolution method work over mention-level
sequences. When mapping from a token to a mention, we
find a mention which contains the token an uses its attributes.
Otherwise, when mapping from a mention to a token, we use
attributes of the first token in the mention (i.e., mention is
a sequence of one or more tokens). After each iteration, the
data integration method performs tagging with classifiers that
were built during the current iteration and updates iteration
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Fig. 12. Data flow using LCRF-based approach for relationship extraction or coreference resolution. First, the initial skip-mention sequence is transformed
into the selected skip-mention sequences. Then, for each of the skip-mention sequence type, a different LCRF model is trained and further used to label the
appropriate skip-mention sequences. The last step depends on the selected task for which the models were learned. For relationship extraction task, relationships
are instantiated from the tagged sequences and returned as a result. For coreference resolution task, the mentions are clustered and each cluster of mentions
represents a specific entity.

target label values for each of the subtasks. These intermediate
labelings are then used by the iterative feature functions.

Ontology module is used in three different contexts. Firstly,
the ontology represents the underlying domain modeled by
the information extraction tasks (i.e., entities and relations are
represented as ontology concepts and properties). Secondly, the
ontology can also define arbitrary concepts, constraints or rules
(e.g., distance between concepts, neighborhood of a concept,
regular expression that a concept must conform to, parent
concepts or gazetteer list of known instances) that are used
directly by feature functions and thus system performance can
be improved by the ontology manipulation. When the system
is deployed in a production environment, this is the only part
of it that can be manipulated by a user. Lastly, ontology also
serves as a data store schema for extracted results.

The results of the extraction are iteratively added to the
input data. At the end of the method execution the extractions
are read from the data set and returned as a semantic graph,
according to the system ontology.

3) Feature functions: Although many feature functions
have been proposed in the literature [6], [29], [57], [58], [59],
[60], we introduce new feature functions for the purpose of
this research. These can be sorted into the following categories:

Preprocessing. These feature functions use standard pre-
processing labels, which are a result of the preprocessing
step, such as lemmas, part-of-speech (POS) tags, chunks, and
parse trees. The derived feature function examples are “target
label distribution”, “do POS tags match on distances up to
two mentions away”, “distribution of POS tags”, “mention
type match”, “is a mention pronoun of demonstrative/definitive
noun phrase”, “is mention a pronoun”, “length between men-
tions within a parse tree”, “parse tree path from the root
node”, “parse tree path between the two mentions”, “depth
of a mention within a parse tree”, and “parse tree parent value
match”.

Location. Sometimes it is important to know where the
mention resides. Location feature functions deal with the men-
tion’s location compared to the whole document, sentence, or

other mentions. Our approach already implicitly uses mention
distance at each skip-mention model, but we still employ some
specific feature functions. Some of them are “sentence, men-
tion or token distance between the two mentions”, “is first/last
mention” and “are mentions within the same sentence”.

Mention shape. Mention constituents are represented as
word phrases and by using mention shape features we are
interested in whether two of them share some property. These
feature functions are string-based and some of them are
implemented as follows: “does a mention start with an upper
case”, “do both mentions start with upper case”, “does a prefix,
postfix, whole of left or right mention on distances up to five
mentions match”, “does a mention text or extent match”, “is
one mention appositive of another”, “is one mention prefix,
suffix or substring of another”, “Hearst mention co-occurrence
rules”, “is a mention within quotes”, “does a mention contain
head or extent words of another” and “length difference
between the two mentions”.

Semantic. This class of feature functions captures se-
mantic relationships between mentions by employing addi-
tional semantic sources, such as WordNet [61], specialized
lexicons, semantic gazeteer lists, and the system ontology.
Some semantic feature functions are “do named entity types
match”, “do mentions agree on gender/number” [62], “is
one mention appositive of another”, “is a mention an alias
of another” (heuristically), “edit distance similarity between
two mentions”, “WordNet relation (hypernym, hyponym or
synonym) between the mentions”, “do mentions share the same
WordNet synset”, “current mention word sense”, “do both
mentions represent an animate object” [63], “do both mentions
speak” (taking context words into account), “concept type
from the ontology”, “parent concept type from the ontology”,
and “possible existing relationships between the ontology
instances”.

Iterative. The iterative feature functions enable joint
information extraction because all the intermediate extractions
from a previous iteration are used in a current iteration.
The iterative feature functions we use include, for example,
“named entity tags”, “extracted relationship between the
two mentions”, “extracted relationship name and observable



values”, “labels of other mention in an extracted relationship”,
and “labels of mentions in the same coreferent cluster”.

Due to the large number of different feature functions, a
detailed description is omitted. Still, their exact implementa-
tions can be retrieved from our public source repository [54]
(within the class FeatureFunctionPackages).

V. RESULTS AND DISCUSSION

To evaluate the proposed system we use Automatic Con-
tent Extraction (ACE) 2004 data set [64] because it is to
our knowledge the only one that includes manually labeled
named entities, relationships and coreferences. For the pur-
poses of evaluation we used all four distinct news domains
of English version of the data set. The selected data set
consists of 443 documents with 191,387 tokens and 7,518
sentences. Further details regarding the used data set are shown
in Table I. The named entities we extract are as follows:
person, organization, facility, location, and geopolitical en-
tity. From the relationships we extract five general relations:
physical, personal/social, employment/membership/subsidiary,
agent-artifact, person/organization affiliation, geopolitial entity
affiliation, and discourse. In the evaluation we use gold men-
tion boundaries and select 80% of data for training and 20%
of data for testing.

In Tables II, III and IV we show extraction results after
each of the five iterations. After the first iteration we achieve
the same results as if we would run each extractor inde-
pendently because no previous iteration exist. Extractors use
feature functions that are described in the previous section,
relationship extractor uses skip-mention sequences ranging
from zero to three and coreference extractor ranging from zero
to twenty-five.

TABLE II. NAMED ENTITY RECOGNITION RESULTS.

Model Error CA MaP MaR MaF MiF
reduction (%)

Independent – 97.0 54.0 30.4 38.9 90.8
Second iteration 10.3 97.2 55.0 33.2 41.4 91.6
Third iteration 15.0 97.8 55.2 33.5 41.7 92.2
Fourth iteration 15.0 97.8 55.2 33.5 41.7 92.2
Fifth iteration 15.0 97.8 55.2 33.5 41.7 92.2

The shown metrics are error reduction in %, classification accuracy (CA),
macro-averaged precision (MaP), macro-averaged recall (MaR), macro-averaged F score
(MaF) and micro-averaged F score (MiF).

We report the results using metrics that are used by the
most of researchers. For named entity recognition we use
macro and micro-averaged F score because these metrics can
show errors when classifying into different classes (Table II).
Classification accuracy of 97.8% does not tell a lot about the
result as there are many tokens in the text that do no belong
to a specific named entity (t.i., tokens labeled with O). It is
interesting to see, that up to the third iteration, the error count
is reduced by 15%. Similar results are also reported by Singh
et al. [47]. Macro-averaged score treats all named entity types
across all the documents as equal, while micro-averaged score
averages the results from all of the documents per entity type.
This is also why there is a big difference between the two
measures. Macro-average F score is low because some named
entity types are poorly recognized. Although, the results nicely

show that the performance of the system is improved after
iterations.

TABLE III. RELATIONSHIP EXTRACTION RESULTS.

Model Error reduction (%) P R F
Independent – 54.3 55.2 54.7
Second iteration 0.8 55.1 55.6 55.3
Third iteration 2.4 54.8 55.6 55.2
Fourth iteration 2.4 55.0 55.4 55.2
Fifth iteration 2.0 54.2 55.7 54.9

The shown metrics are error reduction in %, precision (P), recall (R) and F score (F).

For the relationship extraction we use a standard F score
metric, which is a harmonic mean between precision and recall.
We will recognize a relationship as correctly extracted if it
matches by type and by both attributes. Also for this infor-
mation extraction task we improve the results by a little over
the iterations (Table III). Also, the number of errors decreases
but not as significantly as for named entity recognition task.
At the named entity recognition we observe that the results
do not increase after the third iteration, while at relationship
extraction, the results are even decreased in the fifth iteration.

TABLE IV. COREFERENCE RESOLUTION RESULTS.

Model MUC BCubed CEAF
Independent 73.2 73.9 49.8
Second iteration 73.8 73.5 50.0
Third iteration 74.0 74.1 52.9
Fourth iteration 74.3 73.8 52.8
Fifth iteration 74.3 73.8 52.8

Coreference resolution systems are evaluated using the metrics MUC [65], BCubed [66]
and CEAF [67].

For the coreference resolution we achieve 1.9% lower
MUC score and 5.2% lower BCubed score comparing to
existing best results reported by Haghighi and Klein [33]. Such
results are expected because our approach does not use ground
truth named entities and relationships from the dataset, but uses
results from the other two methods that are partly incorrect.
Nevertheless, also the results for this task also show similar
trend of increasing results as for other two tasks. After the
third iteration the BCubed and CEAF results decrease, while
MUC score is increasing. That is why the MUC metric assigns
better scores to bigger entities even though they are not clean.

We observe that after each iteration the results slightly
improve for each of the information extraction task, which
is our goal. We expect that it is reasonable to use only three
iterations because in the second iteration the results from other
tasks are taken into account and in the third iteration these
results are propagated through two classifiers. For example, in
the first iteration we recognize a named entity, which could
enable an extraction of a previously unextracted relationship.
Then in the third iteration we could better solve a coreference
resolution problem as we know an additional relationship type
for a mention. All the improvements we report are achieved
only by a joint information extraction over more iterations. The
most obvious results are seen for named entity recognition,
where we achieve a reduction of error of 15%. We also
investigated the differences in results if we disable one of
the extractor so that no named entity was recognized, no
relationship was extracted or each mention represented its own
entity. As the differences between the iterations are already so
small, we could not identify, which task is the most important



TABLE I. ACE 2004 DATA SET PROPERTIES.

Data #Documents #Sentences #Tokens #Mentions #Entities #Relationships
Train 354 5,789 140,237 22,079 9,544 4,619
Test 89 1,638 35,490 5,679 2,488 1,185

for the significant increase of results by other two tasks. In
the further work we will try to additionaly improve the results
over the iterations and then show the dependencies between
the information extraction tasks.

VI. CONCLUSIONS

The present paper proposed a novel end-to-end information
extraction system. The system combines the named entity
recognition, relationship extraction and coreference resolu-
tion in a joint and iterative extraction method. We further
introduced special transformations of data into skip-mention
sequences to enable the training and inference using simple
first-order graphical models for all three tasks. The system
also includes an ontology that serves as a database of existing
knowledge and as a schema for extracted results.

The proposed system was evaluated on the only existing
standard data set ACE 2004, which contains manually labeled
data for all three tasks. Our implementations of each extractor
already achieved comparable results to existing work indi-
vidually and their performance was then improved by about
1% after three iterations of joint extraction. Furthermore, we
noticed a high level of error reduction of about 15% for named
entity recognition task.

The future work will focus on the improvement of the
extractors in order to make them even more interconnected.
Moreover, we will also work on developing a scoring measure
that could serve as a standard model for evaluating end-to-end
information extraction systems.
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