

Information Extraction (IE)

Definition

Questions are

guaranteed in

life;

Answers

aren't.

Future Work

Contribution

Evaluation

- Slovene

- Full implementation

- Iterative method

- General IE framework

- Extensive ontology use

- Common algorithms for main tasks

- New features engineering

IE is a type of information retrieval whose goal is to automatically extract structured information from unstructured and/or semi-structured machine-readable documents.

Common approaches

Pattern-based Machine Learning-based

- · Hand-written rules · Induction
 - Classifiers
- Seed expansion
- Sequence models

IOBIE architecture

Named Entity Recognition (NER)

Feature functions classification:

- Preprocessed
- String
- Semantic
- Iteration:

 - NER
 - Relation

 - Co-reference

- Non-linear CRF
- Relational clustering

Features:

- String:
- intervening words, apposition, distance - Iteration:
- #mentions between. relation set feasible

Relation (Mention) Extraction

x = Janez was born in Ljubljana. y = ARG-1 O B-REL I-REL ARG-2

> Label sequence constraint Long range features Features*:

- Semantic:
 - Relation property (arity, functional, reverse)
 - Unseen relation
- Iteration:
- Repeated relation

* - as defined before

Intelligent Ontology-based Information Extraction

Slavko Žitnik Mentor: prof. dr. Marko Bajec Laboratorij za podatkovne tehnologije

Information Extraction (IE)

Definition

IE is a type of information retrieval whose goal is to automatically extract structured information from unstructured and/or semi-structured machine-readable documents.

Common approaches

Pattern-based

- Hand-written rules
- Seed expansion

Machine Learning-based

- Induction
- Classifiers
- Sequence models

Motivation

local

text sources -> www no automatic extraction

relation driven

combining tasks

Ontology-

co-reference

entity

based

never ending learning

[Mitchell T. et. al., 2010]

Janez Novak studied at FRI. As a local, he likes Vino. Pre-processing Janez Novak pren studied at ERIORO. As a local, he likes Vinoproco, Loc. Relation Extraction Relation Extraction As a local, he likes Vinoproco, Loc. As a local, he likes Vinoproco, Loc. As a local, he likes Vinoproco, Loc. Results (Felix: Niu F, et. al., 2011)

insufficient classic architecture

Janez Novak studied at FRI. ...
As a local, he likes Vino.

<u>Janez Novak</u>(PER) studied at <u>FRI</u>(ORG). ...
As a local, he likes <u>Vino</u>(FOOD, LOC).

Janez Novak(PER) studied at FRI(ORG).
...
As a local, he likes Vino(FOOD, LOC).

New iteration:

a

[Felix: Niu F., et. al., 2011]

IOBIE architecture

Conditional Random Fields

[Lafferty, J., McCallum, A., Pereira, F., 2001]

x = Mr. Janez Novak studied at FRI.y = O PER PER O O ORG

Best labeling:

$$\hat{y} = \operatorname{argmax}_{\bar{y}} p(\bar{y}|\bar{x}; w)$$

Standard CRF model:

$$p(\bar{y}|\bar{x};w) = \frac{\exp \sum_{j=1}^{J} w_j F_j(\bar{x}, \bar{y})}{\sum_{\bar{y}'} \exp \sum_{j=1}^{J} w_j F_j(\bar{x}, \bar{y}')}$$

(LC) Feature function:

$$F_j(\bar{x}, \bar{y}) = \sum_{i=1}^n f_j(y_{i-1}, y_i, \bar{x}, i)$$

Feature function example:

$$f(yi1, yi, x, i) =$$
IF $(x(i-1) == "Mr." \&\& yi == "PER") THEN 1 ELSE 0$

Applied in: NLP, bioinformatics, computer vision, pattern recognition, etc.

Named Entity Recognition (NER)

Feature functions classification:

- Preprocessed
- String
- Semantic
- Iteration:
 - NER
 - Relation
 - Co-reference

- Lemma
- POS tag
- Chunk tag
- Parse tree

- Prefix
- Suffix
- Words
- Word shape
- Position
- N-gram
- TF-IDF
- String distance

- Gender match
- Number match
- Property match
- Relation match
- Predefined features with weights
- Rules (inference)
- Regular expressions
- Constraints
- "Gazetteer" lists

- Co-reference NER types
- Is relation subject/object
- Co-referent relations set
- Iteration number
- Type change during iterating
- Multiple labelings

Relation (Mention) Extraction

[Li et. al., 2011]

x = Janez was born in Ljubljana.

y = ARG-1 O B-REL I-REL ARG-2

Label sequence constraint

Long range features

Features*:

- Semantic:
 - Relation property (arity, functional, reverse)
 - Unseen relation
- Iteration:
 - Repeated relation

* - as defined before

Co-reference resolution

- Non-linear CRF
- Relational clustering

Features:

- String:
- intervening words, apposition, distance
 - Iteration:
- #mentions between, relation set feasible

Future Work

- Full implementation
- New features engineering
- Evaluation
- Slovene

Contribution

- Iterative method
- General IE framework
- Common algorithms for main tasks
- Extensive ontology use

