Available theses topics: Difference between revisions

From Slavko Zitnik's research wiki
(Created page with "== Proste teme == === Information Extraction Captcha === Razvijte storitev - "widget", ki bo delovala kot zaščita spletnih obrazcev - "captcha". Zelo uspešna storitev [htt...")
 
No edit summary
Line 23: Line 23:
* [http://alt.qcri.org/semeval2019/index.php?id=tasks SemEval]
* [http://alt.qcri.org/semeval2019/index.php?id=tasks SemEval]
* [http://bsnlp.cs.helsinki.fi/shared_task.html BSNLP Challenge]
* [http://bsnlp.cs.helsinki.fi/shared_task.html BSNLP Challenge]
== Teme v izdelavi ==
== Že izdelane ==
=== Primerjava orodij za vizualizacijo in preiskovanje omrežij (Didka Dimitrova Birova) ===
Zaradi povečevanja količine in kompleksnosti podatkov uporabniki vse težje učinkovito preučujejo velike množice podatkov. Podatki so med seboj povezani in posledično lahko množico podatkov predstavimo in vizualiziramo v obliki omrežja (socialna, biološka, svetovni splet). Glavni namen vizualizacije je učinkovito posredovati in predstaviti podatke s pomočjo vizualne percepcije ter predvsem olajšati raziskovanje podatkov oziroma omrežja. Za analizo in prikaz omrežij obstaja množica orodij - nekatera pokrivajo področje analize kot tudi prikaza, specializirana orodja pa se osredotočajo samo na analizo ali samo na vizualizacijo, oziroma so lahko specializirana za določeno domeno (npr. socialna omrežja).
V okviru naloge bi bilo potrebno narediti primerjavo in evaluacijo orodij za vizualizacijo omrežij – kakšne so omejitve, performance, možnosti za razširitev in dopolnjevanje obstoječih orodij.
Ključne besede: vizualizacija podatkov, omrežja, primerjava orodij
Kontaktna oseba pri izdelavi dela: Neli Blagus
Datoteke: [{{filepath:Diplomska_Didka.pdf}} Diplomsko delo]
=== Označevanje imenskih entitet v pravnih besedilih (Matic Di Batista)===
Odkrivanje podatkov iz besedil velja za eno izmed aktualnih podpodročij v okviru obdelave tekstovnih podatkov. Za slovenski jezik še nimamo dovolj prilagojenih pristopov ali ogromnih podatkovnih množic iz katerih bi lahko zgradili praktično uporabne metode za odkrivanje entitet. Namen diplomske naloge ja zato izdelava orodja, ki bo znalo odkrivati imenske entitete v slovenskih besedilih.
Kandidat naj pregleda obstoječe metode za odkrivanje entitet v besedilih in jih prilagodi za delo s slovenskim jezikom. Pri tem naj primerja njihovo delovanje in razišče morebitne probleme, ki so posledica sintakse in pravil v slovenščini. Nazadnje naj predlaga nov nabor značilk za učenje modelov in razvito metodo testira nad lastno izdelano podatkovno množico.
Ključne besede: ekstrakcija podatkov iz besedil, razpoznavanje entitet, tekstovno rudarjenje
Datoteke: [{{filepath:Diplomska_MaticDiBatista.pdf}} Diplomsko delo]
=== Kontekstualno ujemanje in iskanje na modelu spletne oglasne deske (Vasja Laharnar) ===
Spletne oglasne deske so specializirani iskalniki, ki lahko namesto dokumentov (npr. spletne strani, slike, besedila), indeksirajo uporabnike sistema.  Primer so socialni iskalniki, ki ne vrnejo neposrednega odgovora, ampak se poizvedba pošlje uporabniku, ki ga sistem spozna za relevantnega in nato le ta odgovori. Takšni iskalniki morajo torej bolj upoštevati uporabniške profile in njihove kontekste.
V okviru diplomske naloge naj kandidat izdela spletno storitev, ki bo omogočala objavljanje besedil in njihovo iskanje. Pri tem naj kandidat preuči korake procesiranja besedil za potrebe splošnega indeksiranja. Poleg tega naj pri implementaciji iskanja in primerjanja besedil upošteva tudi semantične podatke, k jih pridobi iz besedil ali profilov uporabnikov. Nazadnje naj izdelano storitev testira na domeni študijskih praks, kjer v sistemu sodelujejo profesorji, študenti in podjetja.
Ključne besede: obdelava naravnega jezika, semantična podobnost, lematizacija, klasifikacija, naivni Bayesov klasifikator, iskanje informacij, iskanje, ujemanje
Datoteke: [{{filepath:Diplomska_VasjaLaharnar.pdf}} Diplomsko delo]
=== Semantično zajemanje podatkov iz predefiniranih virov (Alan Rijavec)===
Izdelajte komponento za zajem podatkov iz spletnih virov. Komponenta naj bo zasnovana modularno, tako da bo dodajanje novega vira zahtevalo le implementacijo določenih vmesnikov. Vhodi in rezultati naj bodo semantično označeni, tako da bo komponenta zmožna sama izvajati klice funkcij in sestavljati rezultate v obliki RDFS ali drugega semantičnega zapisa.
Ključne besede: spletni pajek, razčlenjevanje spletnih strani, semantični splet
Datoteke: [{{filepath:Diplomska_AlanRijavec.pdf}} Diplomsko delo] [{{filepath:IzvornaKoda_AlanRijavec.zip}} Izvorna koda]
=== Beleženje konteksta (Marko Jurinčič)===
Današnje inteligentne aplikacije morajo za svoje delovanje beležiti in uporabljati kontekst uporabnika. Zamislite si pristop, kako čim bolj natančno modelirati kontekst določenega uporabnika. Cilj je, da iz ugotovljenih virov pridobite trenutno relevantne teme (besede) za uporabnika. Uporabljate lahko čim več virov, ki jih lahko: na primer zvok, slika, video uporabnika, pisanje. Primer vašega dela: Implementacija orodne vrstice v iskalniku Firefox, ki ima možnost beleženja in shranjevanja različnih parametrov (čas na določeni spletni strani, interakcija z drugimi programi). Podobna orodna vrstica je implementirana znotraj Lemur Project-a, ki si gradi t.i. query-log. Mogoče tudi beleženje konteksta preko aplikacije pametnega telefona.
Ključne besede: kontekst, vtičnik, podatkovno rudarjenje
Datoteke: [{{filepath:Diplomska_MarkoJurincic.pdf}} Diplomsko delo] [{{filepath:IzvornaKoda_MarkoJurincic.zip}} Izvorna koda]

Revision as of 16:30, 3 August 2022

Proste teme

Information Extraction Captcha

Razvijte storitev - "widget", ki bo delovala kot zaščita spletnih obrazcev - "captcha". Zelo uspešna storitev reCaptcha se uporablja za bolj natančno digitalizacijo knjig. V osnovi deluje tako, da bralcu prikaže dva niza, pri katerem sistem za enega pozna rešitev, za drugega ne. Uporabnik mora oba niza vpisati v vnosno polje. Sistem nato preko več odgovorov ugotovi, kakšna je pravilna digializacija neznanega niza. Znano je, da so včasih nizi zelo nerazločni (še posebej sistemu znani nizi so še dodatno izmaličeni), zato uporabniki zelo neradi vpisujejo te nize. Pri ekstrakciji besedil obstaja mnogo problemov, med katerimi so najbolj znani - ekstrakcija entitet, povezav, koreferenc, in so za ljudi enostavno rešljivi. Kandidat naj razvije reCaptcha-i podobno rešitev, ki bo avtomatsko povečevala učno množico za izbran problem. Pri tem naj upošteva tudi večjezičnost in uporabi orodja, podatkovne množice, ki so trenutno javno dostopne. Pri tem naj kandidat pregleda tudi sorodna dela, ki se nanašajo na implementacijo in težave takšnega preverjanja z orodjem captcha.

Ključne besede: ekstrakcija informacij, gradnja podatkovnih množic, preverjanje vnosov

Primerjava jezikov

Za primerjavo jezikov obstajajo že uveljavljene metode, s katerimi se lahko primerja, kdaj sta si jezika sorodna, enaka oz. kako različna sta si. Kandidat naj v okviru zaključnega dela primerja besedila novic iz področja Slovenije z besedili novic zamejskih Slovencev ali izseljencev. Primeri novic izseljencev so na primer novice.at (Avstrija), Novi list (Argentina), ipd., pri čemer naj kandidat najde tudi druge primerne vire. Po primerjavi teh množic naj kandidat primerja besedila v slovenščini še z novicami podobnih slovanskih jezikov (npr. hrvaščina) ter ugotovi, kakšna je jezikovna različnost med takšnimi pari v primerjavi z zamejsko slovenščino.

Ključne besede: slovenščina, primerjava besedil, novice

Analiza sentimenta do objektov v besedilih

Sentiment se navadno ugotavlja za določen del besedila oz. celotno besedilo naenkrat. Velikokrat se v novicah pojavi mnogo entitet, do katerih ima lahko pisec različen sentiment. V okviru zaključnega dela naj kandidat pridobi korpus novic, v okviru katerih naj prepozna določen tip entitet (npr. osebe) in njihove omenitve, do katerih naj za posamezno novico avtomatsko ugotovi sentiment.

Ključne besede: analiza sentimenta, prepoznavanje imenskih entitet, odkrivanje koreferenčnosti

Ostale možne tematike

Kandidat si lahko zamisli svoj lasten problem iz področja iskanja in ekstrakcije vsebin is spleta ali procesiranja naravnega jezika ter ga uskladi z mentorjem. Tematike se lahko dotikajo tudi analize in uporabe odprtokodnih sistemov (npr. Solr, Lucene, ...), ki so morda trenutno aktualne, uporabe in analize odprtih podatkov (npr. iz portala OPSI). Prav tako vsako leto na področju analize besedil potekajo tekmovanja z zanimivimi tematikami, s katerimi se lahko lahko spoprime: